摘要
Mode-and polarization-division multiplexing are new promising options to increase the transmission capacity of optical communications.On-chip silicon polarization and mode handling devices are key components in integrated mode-and polarization-division multi-plexed photonic circuits.In this paper,we review our recent progresses on silicon-based polarization beam splitters,polarization splitters and rotators,mode(de)multiplexers,and mode and polarization selective switches.Silicon polarization beam splitters and rotators are demonstrated with high extinction ratio,compact footprint and high fabrication tolerance.For on-chip mode multiplexing,we introduce a low loss and fabrication tolerant three-mode(de)multiplexer employing sub-wavelength grating structure.In analogy to a conventional wavelength selective switch in wavelength-division multi-plexing,we demonstrate a selective switch that can route mode-and polarization-multiplexed signals.
Mode-and polarization-division multiplexing are new promising options to increase the transmission capacity of optical communications.On-chip silicon polarization and mode handling devices are key components in integrated mode-and polarization-division multi-plexed photonic circuits.In this paper,we review our recent progresses on silicon-based polarization beam splitters,polarization splitters and rotators,mode(de)multiplexers,and mode and polarization selective switches.Silicon polarization beam splitters and rotators are demonstrated with high extinction ratio,compact footprint and high fabrication tolerance.For on-chip mode multiplexing,we introduce a low loss and fabrication tolerant three-mode(de)multiplexer employing sub-wavelength grating structure.In analogy to a conventional wavelength selective switch in wavelength-division multi-plexing,we demonstrate a selective switch that can route mode-and polarization-multiplexed signals.
基金
We thank Prof. Richard Soref, Prof. Xiaoqing Jiang, Prof. Jianyi Yang, and Prof. Christine Tremblay et al. for their helpful discussion and contributions. This work was supported in part by the National Natural Science Foundation of China (NSFC) (Grant Nos. 61605112, 61235007, 61505104), in part by the 863 High-Tech Program (No. 2015AA017001), and in part by the Science and Technology Commission of Shanghai Municipality (Nos. 15ZR1422800, 16XD1401400). We thank the Center for Advanced Electronic Materials and Devices (AEMD) of Shanghai Jiao Tong University for the support in device fabrications.