期刊文献+

?~p空间上的乘子

The Multiplier of ?~p
下载PDF
导出
摘要 刻画离散Banach空间?~p上的乘子.研究乘子在?~p上的代数性质,得到?~∞是?~p的乘子. In this paper,we characterize the multiplier of the discrete Banach Space l^p.By discussing the algebraic properties of the multiplier of lp,we prove that the multiplier of l^p is l^∞.
作者 秦杰 黄穗 QIN Jie;HUANG Sui(School of Mathematics Sciences, Chongqing Normal University, Chongqing 401331)
出处 《四川师范大学学报(自然科学版)》 CAS 北大核心 2018年第1期28-31,共4页 Journal of Sichuan Normal University(Natural Science)
基金 国家自然科学基金(11501068) 重庆市教育委员会项目(KJ1600302)
关键词 乘子 希尔伯特空间 L2 极大交换性 l^p quad multiplier Hilbert space l^2 maximal abelian l^P
  • 相关文献

参考文献1

二级参考文献13

  • 1Laursen K B and Neumann M M. An Introduction to Local Spectral Theory. Oxford: Clarendon Press, 2000.
  • 2Aiena P. Fredholm and Local Spectral Theory with Applications to Multipliers. London: Kluwer Academic Publishers, 2004.
  • 3Larsen R. An Introduction to the Theory of Multipliers. Berlin: Springer-Verlag,1971.
  • 4Laustsen N J. Matrix multiplication and composition of operators on the direct sum of an infinite sequence of Banach spaces. Math. Proc. Camb. Phil. Soc., 2001, 121: 165-183.
  • 5Djordjevic S V and Zguitti H. Essential point spectra of operator matrices through local spectral theory. Journal of Mathematical Analysis and Applications, 2008, 338: 285-291.
  • 6Djordjevic S V and Han Y M. A note on Weyl's theorem for operator matrices. Proc. Amer. Math. Soc., 2003, 131: 2543-2547.
  • 7Benhida C, Zerouali E H and Zguitti H. Spectra of upper triangular operator matrices. Proc. Amer. Math. Soc., 2005, 133: 3013-3020.
  • 8Koliha J J and Rakocevic V. Differentiability of the g-Drazin inverse. Studia Mathematica, 2005, 168: 193-203.
  • 9Koliha J J. Isolated spectral points. Proc. Amer. Soc., 1996, 124: 3417-3424.
  • 10Koliha J J. A generalized Drazin inverse. Glasgow Math.J., 1996, 38: 367-381.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部