期刊文献+

基于L_(1/2)范数正则化的塑性回声状态网络故障诊断模型 被引量:1

A fault diagnosis model of plasticity echo state network based on L_(1/2)-norm regularization
下载PDF
导出
摘要 为了提升储备池的动态适应性能,克服回声状态网络(ESN)输出权值求解的病态不适定问题,平衡其拟合与泛化能力,提出了一种基于L_(1/2)范数正则化的塑性回声状态网络故障诊断模型。在储备池构建中引入BCM规则对连接权矩阵进行预训练,并在目标函数中添加L_(1/2)范数惩罚项以提高稀疏化效率,利用一个光滑化的L_(1/2)正则子克服迭代数值振荡问题,并采用半阈值迭代法对模型进行求解。将模型应用于机载电台的故障诊断问题中,仿真结果证明了模型的有效性和优越性。 In order to improve the dynamic adaptability of reservoir,overcome the ill-posed problems of output weights in echo state network(ESN),and balance the fitting and generalization ability,a fault diagnosis model of plasticity echo state network based on L(1/2)-norm regularization is presented.BCM rule was introduced into the reservoir construction to train the connection weight matrix.Meanwhile,the L_(1/2)-norm penalty term was added to the objective function in order to improve the sparsification efficiency.An iterative numerical oscillation problem was solved by using a smoothing L(1/2)regularizer,and finally the model was solved by using the half threshold iteration method.The model is applied to the fault diagnosis of airborne radio station,and the simulation results prove the validity and superiority of the model.
作者 逯程 徐廷学 王虹 LU Cheng;XU Tingxue;WANG Hong(Coastal Defense College, Naval Aeronautical and Astronautical University, Yantai 264001, China;The 55th Institute, Joint Staff Department of the Central Military Commission, Beijing 100094, China)
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2018年第3期535-541,共7页 Journal of Beijing University of Aeronautics and Astronautics
基金 国家自然科学基金(51605487) 山东省自然科学基金(ZR2016FQ03)~~
关键词 储备池 回声状态网络(ESN) BCM规则 L1/2范数正则化 半阈值迭代法 故障诊断 reservoir echo state network (ESN) BCM rule L1/2-norm regularization half thresholditeration method fault diagnosis
  • 相关文献

参考文献5

二级参考文献43

  • 1叶健,葛临东,吴月娴.一种优化的RBF神经网络在调制识别中的应用[J].自动化学报,2007,33(6):652-654. 被引量:32
  • 2Jaeger H. The "Echo State" Approach to Analysing and Training Recurrent Neural Networks[ R]. Bremen: German National Research Center for Information Technology,2001.
  • 3Jaeger H, Haas H. Harnessing nonlinearity: Predicting chaotic system and saving energy in wireless communication[ J ]. Science,2004,304(5667) :78 - 80.
  • 4Skowronski M D, Harris J G. Automatic speech recognition using a predictive echo state network classifier[J]. Neural Networks, 2007,20(3) :414 - 423.
  • 5Ding Hai-yan, Pei Wenjiang, He Zhen-ya. A multiple objective optimization based echo state network tree and application to inmJsion detection[ A]. Proceedings of 2005 IEEE International Workshop on VLSI Design and Video Technology[ C ]. Piscataway: Institute of Electrical and Electronics Engineers Inc, 2005.443 - 446.
  • 6Alexandre L A, Embrechts M J, Linton J. Benchmarking reservoir computing on time independent classification tasks [ A ]. Proceedings of the International Joint Conference on Neural Networks[ C]. Piscataway: Institute of Electrical and Electronics Engineers Inc,2009.89- 93.
  • 7Nisbach F, Kaiser M. Developmental time windows for spatial growth generate multiple-cluster small-world networks[ J]. European Physical Journal B,2007,58(2):185- 191.
  • 8Jaeger H. Tutorial on training recurrent neural networks, covering BPPT,RTRL,EKF and the "echo state network" approach [R]. Bremen: German National Research Center for Information Technology, 2002.
  • 9Kaiser M, Hilgetag C C. Development of multi-cluster cortical networks by time windows for spatial growth [ J ]. Neurocomputing,2007,70(10 - 12) :1829 - 1832.
  • 10Song Qingsong, Feng Zuren. Effects of connectivity structure of complex echo state network on its prediction performance for nonlinear time sedes[J]. Neurocomputing, 2010,73( 10 - 12) : 2177 - 2185.

共引文献137

同被引文献9

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部