期刊文献+

苏州地铁客流波动特性分析 被引量:4

Characteristics of Passenger Flow Volatility of Suzhou Railway
下载PDF
导出
摘要 为研究轨道交通客流的波动性,提出使用SARIMA+GARCH这一随机结构作为轨道交通客流的综合时间序列模型。在这个随机结构中,SARIMA模型描述客流时间序列的一阶状态,即均值特征;GARCH模型获得客流时间序列的二阶状态,即条件异方差特征。采用苏州地铁全网客流数据作为分析实例,对5 min、15 min和1 h汇集度的工作日和休息日客流共6组客流数据进行波动性建模、预测与分析,结果表明,SARIMA+GARCH模型具有较好的预测性能。基于各组客流数据的分析结果,分别对工作日与休息日以及不同时间汇集度之间的客流波动特性进行对比,结果表明:休息日客流的波动性强于工作日客流;时间汇集度小的情况下,客流的波动性会更强。 To study the volatility of passenger flow,the random structure of the SARIMA + GARCH model as a comprehensive time-series model for railway passenger flow is proposed.In this structure,the SARIMA model describes the first-order state,i.e.the mean feature,and the GARCH model obtains the second-order state,i.e.the conditional heteroskedasticity.Taking the passenger data of Suzhou railway as an example,the volatility of passenger flow in 5 min,15 min,and 1 h time intervals and rest days is modeled,forecasted,and analyzed.It is found that the SARIMA + GARCH model can provide a good prediction performance.Based on the analysis results of each group,the passenger flow volatility between the working and rest days,as well as between different time intervals,is compared.The results show that the volatility of passenger flow on rest days is stronger than that on working days.At the same time,when the time interval is shorter,the volatility of passenger flow is stronger.
作者 彭培培 杨越思 高国飞 魏运 郭建华 PENG Peipei;YANG Yuesi;GAO Guofei;WEI Yun;GUO Jianhua(Suzhou Rail Transit Group Co., Ltd., Suzhou 215004;Intelligent Transport System Research Center, Southeast University, Nanjing 210096;Beijing Urban Construction Design & Development Group Co., Ltd., Beijing 100037)
出处 《都市快轨交通》 北大核心 2018年第2期58-65,共8页 Urban Rapid Rail Transit
基金 苏州市轨道交通集团有限公司科研项目(SZZG06YJ 1050008)
关键词 城市轨道交通 客流波动性 SARIMA模型 GARCH模型 urban rail transit passenger flow volatility SARIMA model GARCH model
  • 相关文献

参考文献2

二级参考文献17

  • 1徐启华,杨瑞.支持向量机在交通流量实时预测中的应用[J].公路交通科技,2005,22(12):131-134. 被引量:21
  • 2翁剑成,荣建,任福田,魏中华.基于非参数回归的快速路行程速度短期预测算法[J].公路交通科技,2007,24(3):93-97. 被引量:17
  • 3邓聚龙.灰色控制系统[M].武汉:华中理工大学出版社,1993..
  • 4OKUTANI I, STEPHANEDES Y J. Dynamic prediction of traf- fic volume through Kalman filtering theory[J]. Transportation Research Part B: Methodological, 1984, 18(1): 1-11.
  • 5SMITH B L, WILLIAMS B M, OSWALD R K. Comparison of parametric and nonparametric models for traffic flow forecasting[J]. Transportation Research Part C: Emerging Technologies, 2002, 10(4): 303-321.
  • 6HSU C W, LIN C J. A comparison of methods for multi-class support vector machines[J]. IEEE Transactions on NeuralNetworks, 2002, 13(2): 415-425.
  • 7DAVIS G A, NIHAN N L. Nonparametric regression and short term freeway traffic foreeasting[J]. Journal of Trans- portation Engineering, 1991, 117(2): 178-188.
  • 8SMITH B L, DEMETSKY M J. Traffic flow forecasting: comparison of modeling approaches[J]. Journal of Transpor tation Engineering, 1997, 123(4) : 261- 266.
  • 9YU Bin, LAM W H K, TAM M L. Bus arrival time predic- tion at bus stop with multiple routes[J]. Transportation Research Part C: Emerging Technologies, 2011, 19 (6) : 1157-1170.
  • 10干宏程,汪晴,范炳全.基于宏观交通流模型的行程时间预测[J].上海理工大学学报,2008,30(5):409-413. 被引量:5

共引文献100

同被引文献27

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部