摘要
La_(0.8)Sr_(0.2)MnO_3 samples with rhombohedral, orthohombic and monoclinic structures were prepared by solid state reaction, sol-gel and co-precipitation methods, respectively. Lattice parameters, grain size, morphology, infrared absorption and emissivity of samples were investigated. The results indicated that the average crystallite size calculated from XRD result and particle size of orthohombic sample were smaller than those of the other two samples, and honeycomb shape grains were observed in orthohombic sample. Due to lower crystal symmetry, Mn-O stretching vibration peaks of the three samples shifted to higher infrared wavenumber. According to the theory of wave optics and Kirchhoff law, bigger rhombohedral sample showed higher emissivity than monoclinic one. However, due to the honeycomb structure of orthohombic sample, repeated reflection and scattering led to the increase of absorption, and orthohombic sample exhibited the highest emissivity.
La_(0.8)Sr_(0.2)MnO_3 samples with rhombohedral, orthohombic and monoclinic structures were prepared by solid state reaction, sol-gel and co-precipitation methods, respectively. Lattice parameters, grain size, morphology, infrared absorption and emissivity of samples were investigated. The results indicated that the average crystallite size calculated from XRD result and particle size of orthohombic sample were smaller than those of the other two samples, and honeycomb shape grains were observed in orthohombic sample. Due to lower crystal symmetry, Mn-O stretching vibration peaks of the three samples shifted to higher infrared wavenumber. According to the theory of wave optics and Kirchhoff law, bigger rhombohedral sample showed higher emissivity than monoclinic one. However, due to the honeycomb structure of orthohombic sample, repeated reflection and scattering led to the increase of absorption, and orthohombic sample exhibited the highest emissivity.
基金
Funded by the National Natural Science Foundation of China(Nos.51302003 and 51274006)