期刊文献+

Hyaluronic Acid-RGD Peptide Conjugated Mesoporous Silica-coated Gold Nanorods for Cancer Dual-targeted Chemo-photothermal Therapy

Hyaluronic Acid-RGD Peptide Conjugated Mesoporous Silica-coated Gold Nanorods for Cancer Dual-targeted Chemo-photothermal Therapy
下载PDF
导出
摘要 A multifunctional drug delivery system(GNRs@mSiO_2-HA-RGD) was developed by conjugating targeting ligand hyaluronic acid(HA) and RGD with mesoporous silica-coated gold nanorods(GNRs@mSiO_2) for dual-targeted chemo-photothermal therapy. The physiochemical properties of the prepared nanoparticles were characterized by FTIR, UV-vis spectra, and ~1H NMR. Doxorubicin hydrochloride(DOX), an anticancer drug, was used as the model drug to investigate the drug loading, in vitro drug release profiles and cytotoxicity. The experimental results show that DOX-GNRs@mSiO_2-HA-RGD is synthesized with a mean diameter of 116 nm and a sufficient load capacity of about 19.8%. It also has p H-enzyme sensitive and NIRtriggered drug release manner. Cellular uptake indicates that DOX-GNRs@mSiO_2-HA-RGD exhibits a higher cellular uptake via CD44 receptor and integrin receptor mediated endocytosis compared with the GNRs@mSiO_2 modified with one receptor or no receptor. In comparison with chemotherapy or photothermal therapy alone, DOX-GNRs@mSiO_2-HA-RGD displayes the synergistic effects and achieves a higher therapeutic efficacy. It can be expected that DOX-GNRs@mSiO_2-HA-RGD is a potential dual-targeted chemo-photothermal therapeutic platform for effective cancer treatment. A multifunctional drug delivery system(GNRs@mSiO_2-HA-RGD) was developed by conjugating targeting ligand hyaluronic acid(HA) and RGD with mesoporous silica-coated gold nanorods(GNRs@mSiO_2) for dual-targeted chemo-photothermal therapy. The physiochemical properties of the prepared nanoparticles were characterized by FTIR, UV-vis spectra, and ~1H NMR. Doxorubicin hydrochloride(DOX), an anticancer drug, was used as the model drug to investigate the drug loading, in vitro drug release profiles and cytotoxicity. The experimental results show that DOX-GNRs@mSiO_2-HA-RGD is synthesized with a mean diameter of 116 nm and a sufficient load capacity of about 19.8%. It also has p H-enzyme sensitive and NIRtriggered drug release manner. Cellular uptake indicates that DOX-GNRs@mSiO_2-HA-RGD exhibits a higher cellular uptake via CD44 receptor and integrin receptor mediated endocytosis compared with the GNRs@mSiO_2 modified with one receptor or no receptor. In comparison with chemotherapy or photothermal therapy alone, DOX-GNRs@mSiO_2-HA-RGD displayes the synergistic effects and achieves a higher therapeutic efficacy. It can be expected that DOX-GNRs@mSiO_2-HA-RGD is a potential dual-targeted chemo-photothermal therapeutic platform for effective cancer treatment.
出处 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2018年第2期512-523,共12页 武汉理工大学学报(材料科学英文版)
基金 Funded by the National Natural Science Foundation of China(Nos.51473130 and 51572206) the Wuhan Huanghe excellence plan and Entrepreneurship Training Program of Wuhan University and Technology(Nos.20171049720018,20171049720019,and 20171049720009)
关键词 hyaluronic acid RGD mesoporous silica-coated gold nanorods chemotherapy photothermal therapy hyaluronic acid RGD mesoporous silica-coated gold nanorods chemotherapy photothermal therapy
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部