期刊文献+

Individualized prediction of perineural invasion in colorectal cancer: development and validation of a radiomics prediction model 被引量:27

Individualized prediction of perineural invasion in colorectal cancer: development and validation of a radiomics prediction model
下载PDF
导出
摘要 Objective: To develop and validate a radiomics prediction model for individualized prediction of perineural invasion(PNI) in colorectal cancer(CRC).Methods: After computed tomography(CT) radiomics features extraction, a radiomics signature was constructed in derivation cohort(346 CRC patients). A prediction model was developed to integrate the radiomics signature and clinical candidate predictors [age, sex, tumor location, and carcinoembryonic antigen(CEA) level]. Apparent prediction performance was assessed. After internal validation, independent temporal validation(separate from the cohort used to build the model) was then conducted in 217 CRC patients. The final model was converted to an easy-to-use nomogram.Results: The developed radiomics nomogram that integrated the radiomics signature and CEA level showed good calibration and discrimination performance [Harrell's concordance index(c-index): 0.817; 95% confidence interval(95% CI): 0.811–0.823]. Application of the nomogram in validation cohort gave a comparable calibration and discrimination(c-index: 0.803; 95% CI: 0.794–0.812).Conclusions: Integrating the radiomics signature and CEA level into a radiomics prediction model enables easy and effective risk assessment of PNI in CRC. This stratification of patients according to their PNI status may provide a basis for individualized auxiliary treatment. Objective: To develop and validate a radiomics prediction model for individualized prediction of perineural invasion(PNI) in colorectal cancer(CRC).Methods: After computed tomography(CT) radiomics features extraction, a radiomics signature was constructed in derivation cohort(346 CRC patients). A prediction model was developed to integrate the radiomics signature and clinical candidate predictors [age, sex, tumor location, and carcinoembryonic antigen(CEA) level]. Apparent prediction performance was assessed. After internal validation, independent temporal validation(separate from the cohort used to build the model) was then conducted in 217 CRC patients. The final model was converted to an easy-to-use nomogram.Results: The developed radiomics nomogram that integrated the radiomics signature and CEA level showed good calibration and discrimination performance [Harrell's concordance index(c-index): 0.817; 95% confidence interval(95% CI): 0.811–0.823]. Application of the nomogram in validation cohort gave a comparable calibration and discrimination(c-index: 0.803; 95% CI: 0.794–0.812).Conclusions: Integrating the radiomics signature and CEA level into a radiomics prediction model enables easy and effective risk assessment of PNI in CRC. This stratification of patients according to their PNI status may provide a basis for individualized auxiliary treatment.
出处 《Chinese Journal of Cancer Research》 SCIE CAS CSCD 2018年第1期40-50,共11页 中国癌症研究(英文版)
基金 supported by the National Key Research and Development Program of China (No. 2017YFC1309100) the National Natural Scientific Foundation of China (No. 81771912, 81701782 and 81601469)
关键词 Colorectal cancer perineural invasion prediction model radiomics nomogram Colorectal cancer perineural invasion prediction model radiomics nomogram
  • 相关文献

参考文献2

共引文献109

同被引文献107

引证文献27

二级引证文献167

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部