期刊文献+

一种基于轨道根数约束的最优制导方法 被引量:3

An optimal guidance method based on orbital element constraints
原文传递
导出
摘要 针对航天器空间变轨的制导问题,研究了一种基于轨道根数约束的最优制导方法。在地心惯性坐标系下直接建立航天器的最优控制模型,给出了位置速度表达式和协态变量初值之间的关系;进一步,在不约束真近点角的前提下,推导了5个轨道根数的约束方程,并通过对轨道根数和最优控制理论中协态方程的特性分析,获得了另外两个约束方程。协态变量初值可直接通过求解7个完整约束方程组获得,进而得到最优推力方向。仿真验证了所提制导方法的有效性。 This paper proposes an optimal guidance method based on orbital element constraints,for the guidance problem during orbital transfer of spacecraft.The optimal control model for the spacecraft is established in the earth centered inertial coordinate frame directly.The relationship between expressions for the position and velocity and the initial values of costate variables is then given.Besides,five orbital element constraint equations are derived without constraint on the true anomaly.The other two constraint equations are given based on the analysis of characteristics of orbital elements and costate equations under the optimal control framework,which include the constraint and scale property of the established optimal conditions,respectively.The initial values of costate variables can be obtained by solving the seven complete constraint equations,and the optimal thrust direction can then be given.Simulations demonstrate the effectiveness of the proposed guidance method.
作者 李超兵 吕春红 尚腾 LI Chaobing;LYU Chunhong;SHANG Teng(Beijing Aerospace Automatic Control Institute, Beijing 100854, China)
出处 《航空学报》 EI CAS CSCD 北大核心 2018年第4期198-207,共10页 Acta Aeronautica et Astronautica Sinica
关键词 航天器 轨道根数 最优控制 约束方程 轨道转移 spacecraft orbital elements optimal control constraint equation orbit transfer
  • 相关文献

参考文献7

二级参考文献50

  • 1郑军.灵活机动、便捷高效的固体弹道导弹[J].兵器知识,1999,0(10):31-33. 被引量:2
  • 2刘云凤,罗俊,赵世范.闭路制导在小型固体运载火箭中的应用[J].航天控制,2005,23(3):46-50. 被引量:7
  • 3土星运载火箭的迭代制导概念[J].国外导弹技术,1980,5.
  • 4凌德海.近代制导[M].国防科大,1982年7月..
  • 5土星火箭迭代制导介绍[J].国外导弹技术,1980,3.
  • 6泮斌峰.空天飞行器闭环制导理论与应用研究[D].西安:西北工业大学,2010.
  • 7Chandler D C, Smith I E. Development of the iterative guidance mode with its application to various vehicles and missions[J]. Journal of Spacecraft and Rockets, 1967, 4(7): 898-903.
  • 8Lawden D F. Optimal trajectories for space navigation[M]. London: Butterworths, 1963:1-98.
  • 9Jezewski D J. An optimal, analytic solution to the linear-gravity, constant-thrust trajectory problem[J]. Journal of Spacecraft and Rockets, 1971, 8(7): 793-796.
  • 10Jezewski D J. N-burn optimal analytic trajectories. AIAA-1972-929, 1972.

共引文献64

同被引文献20

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部