期刊文献+

地埋管换热器占地面积及钻井费用方案设计 被引量:1

Scheme design of cover areas and drilling cost for ground heat exchanger
下载PDF
导出
摘要 常规设计的地埋管换热器会出现埋管占地面积大、钻井费用过高的问题。本文以地埋管常规设计工况为基础,建立地埋管换热器的设计模型,优化换热器的布置形式。结果表明:相比常规布置形式,优化模型可得到较小的埋管间距和埋深,其中:制冷工况下,土壤温度变化量为3~10 K时,对应的最小埋管间距范围为0.7~3.5 m,对应的最小埋深范围为20~110 m;制热工况下,土壤温度变化量为3~10 K时,对应的最小埋管间距范围为0.4~2.0 m,对应的最小埋深范围为5~35 m。通过随机组合埋深及埋管间距进一步优化研究发现:埋深大于25 m时,占地面积小于常规占地面积;埋管间距大于1 m时,钻井总费用的比值都小于1。 The ground heat exchanger with the conventional design usually has large cover area and high drilling cost. Based on the normal design condition of buried-pipe, the design model of ground heat exchanger is established and the layout of heat exchanger is optimized. The results show that compared with the conventional layout form, it can ob-tain smaller buried-pipe spacing and depth in the optimization model. Under the cooling condition, when the soil temperature^ variation is 3 - 10 K, the minimum spacing range is 0.7 - 3.5 m and the minimum depth range is 20-110 m; under the heating condition, when the soil temperature’s variation is 3 - 10 K,the minimum spacing range is 0.4 - 2.0 m9 and the minimum depth range is 5 - 35 m. By combining the buried-pipe depth and spacing randomly to further optimize the study, it’s found that when the buried-pipe depth is greater than 25 m9 the cover area is less than the conventional area; when the buried- pipe spacing is greater than 1 m, the total drilling cost ratio is less than 1.
作者 杨慧斌 罗苏瑜 Yang Huibin;Luo Suyu(Chinese National Engineering Research Center of Green Refrigeration Equipmen)
出处 《制冷与空调》 2018年第4期18-23,7,共7页 Refrigeration and Air-Conditioning
关键词 埋管换热器 埋深 埋管间距 优化 ground heat exchanger buried-pipe depth buried-pipe spacing optimization
  • 相关文献

参考文献3

二级参考文献30

  • 1深圳麦克维尔空调有限公司,合肥通用机械研究所.GB/T19409-2003水源热泵机组[s].北京:中国标准出版社,2004.
  • 2GB50366-2009,地源热泵系统工程技术规范[s].
  • 3Kavanaugh S P. Field tests for ground thermal properties--methods and impact on ground-source heat pump design[G]//ASHRAE Trans, 2000, 106 (1): 851-855.
  • 4Gu Yian, Dennis L O'Neal. Modeling the effect of backfills on U-tube ground coil performance [G]// ASHRAE Trans, 1998, 104(2): 356-365.
  • 5Bemier M A. Grotmd-coupled heat pump system simulation [G]//ASHRAE Trans, 2001,107 (1) :605- 616.
  • 6Murugappan Arunachalam. Implementing ground source heat pump and ground loop heat exchanger model in the Energyplus simulation environment [D]. America: Oklahoma State University, 2002.
  • 7Khan M H, Varanasi J A, Spilter J D. Hybrid ground source heat pump system simulation using visual modeling tool for HVACsim + [C] // Proceeding of the 8^th IBPSA Conference. Eindhoven, Netherlands, 2003.
  • 8Hellstrom G. Ground heat storage: thermal analyses of duct storage systems [D]. Sweden: Lunds University, 1991.
  • 9Youssef Mohammad-Zadeh. Experimental and mathematical analysis of three ground-coupled heat exchangers [D]. America: North Carolina State University, 1990.
  • 10Lawrence Berkeley National Laboratory (LBNL). GenOpt, Generic Optimization Program[R]. Version 3. 0. 0. Simulation Research GrouP, Building Technologies Department, Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, 2009.

共引文献8

同被引文献4

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部