期刊文献+

时变轴系纵向振动的主动控制

Active Control of Longitudinal Vibration for the Time-varying Shafting System
下载PDF
导出
摘要 船舶推进轴系的纵向支撑刚度会随轴速的变化而发生较大变化,使得螺旋桨干扰力引起的轴系振动变为时变振动。本文先建立推进轴系的纵向振动模型,并通过频响综合的方法求得控制通道和干扰通道的频响函数,分析不同刚度参数下系统的动态特性变化。其次,提出在线辨识控制通道模型的滤波自适应控制方法,消除模型误差对纵向振动控制稳定性的影响。为验证控制方法的有效性,对建立的模型进行数值仿真,仿真结果表明,在单频和多频干扰下,提出的控制算法均能有效抑制推力轴承的纵向振动。 The longitudinal supporting stiffness of the shafting system changes with shaft speed in a wide range. And this will cause the time-varying vibration of the longitudinal vibration induced by propeller excitation. Firstly, the longitudinal vibration model of the propulsion shafting system is established, and the frequency response functions of the control channel and the disturbance channel are obtained by the frequency response synthesis. And the time-varying dynamics are analyzed at different stiffness. Then, the adaptive filter control with online model identification is proposed to eliminate the influence of time-varying dynamics on the stability and performance of control algorithm. To validate the effectiveness of proposed method, numerical simulation is conducted. Simulation results have demonstrated that the proposed method can effective suppress the vibration of thrust bearing.
作者 郑洪波 覃会 杨德权 张志谊 ZHENG Hongbo;QIN Hui;YANG Dequan;ZHANG Zhiyi(State Key Laboratory of Mechanical System and Vibration, Shanghai Jiaotong University, Shanghai 200240, China;Collaborative Innovation Center for Advanced Ship and Deep-sea Exploration, Shanghai Jiaotong University, Shanghai 200240, China)
出处 《噪声与振动控制》 CSCD 2018年第A01期303-306,共4页 Noise and Vibration Control
基金 国家自然科学基金资助项目(11672180)
关键词 振动与波 轴系纵振 时变系统 滤波自适应控制 回归预测误差方法 vibration mid wave longitudinal vibration of the shafting system time-varying system adaptive filter control recursive prediction error approach
  • 相关文献

参考文献1

二级参考文献48

  • 1曾革委.螺旋桨轴系艇体半主动控制仿真[c]//崔维成.2005年船舶结构力学学术会议论文集.舟山:《船舶力学》编辑部,2005:519—523.
  • 2陈志坚.舰艇振动学[M].北京:国防工业出版社,2010.
  • 3FENG G P, ZHANG Z Y, CHEN Y, et al. Research on transmission paths of a coupled beam-cylindrical shell system by power flow analysis[J]. Journal of Mechanical Science and Technology, 2009, (23): 2138-2148.
  • 4JAKOBSEN S B. Coupled axial and torsional vibration calculations on long-stroke diesel engines[J]. Society of naval architects and marine engineers, 1991, 99:405-419.
  • 5CHERTOCK G. Forces on a submarine hull induced by the propeller[J]. Journal of Ship Research, 1965, 9(2): 122-130.
  • 6CARLTON J. Marine propellers and propulsion[M]. Bodmin Cornwall: MPG Books Ltd, 2007.
  • 7POOLE R. The axial vibration of diesel engine crankshafts[J]. Proceedings of the Institution of Mechanical Engineers, 1941, 146: 167-182.
  • 8OLSSON A. Axial vibration and measurements of stress in crankeshafts[J]. International shipbuilding progress, 1963, 10(107).
  • 9VISSER N J. The Axial stiffness of marine diesel engine crankshafts[J]. International shipbuilding progress, 1968, 15(168).
  • 10RIGBY C P. Longitudinal vibrations of marine propeller shafting[J]. Transactions of the Institute of Marine Engineers, 1948, (60): 67-78.

共引文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部