期刊文献+

神经元PID控制器在两轮机器人控制中的应用 被引量:2

下载PDF
导出
摘要 文章在此对两轮机器人的控制进行研究,主要目的是针对PID控制器参数较为困难的问题进行解决。文章在此设计了一种新的方法,构建神经元PID控制器。通过利用该控制器,神经元的自适应能力与自学习能力得到了极大的改善。可以对控制器的各项参数进行在线的实时调整,进而针对两轮机器人构建了非线性模型,对神经元PID控制系统进行了讨论,然后对其算法进行了探讨,并分析了该项控制器的参数,进而在两轮机器人的平衡控制中应用文章所设计的控制器。最后,将文章设计的控制器与传统的控制器进行对比,通过仿真模拟增强了该控制器的有效性与准确性,再在两轮机器人物理系统中应用该控制器,实际取得的效果非常好。 In this paper, the control of two-wheeled robot is studied, the main purpose is to set the parameters of PID controller to solve the more difficult problem. This paper designs a new method to construct neuron PID controller. With this controller, the adaptive ability and self-learning ability of neurons are greatly improved. The parameters of the controller can be adjusted in real time, and then the nonlinear model of the two-wheeled robot is constructed. The neural PID control system is discussed, and its algorithm is discussed. The parameters of the controller are analyzed, and the controller designed in this paper is applied to the balance control of the two-wheeled robot. Finally, the controller designed in this paper is compared with the traditional controller. The simulation results show that the controller is effective and accurate. Then the controller is applied in the two-wheel robot physicalsystem, with a good result.
作者 刘蕊
出处 《科技创新与应用》 2018年第14期157-158,共2页 Technology Innovation and Application
关键词 两轮机器人 神经元 PID控制器 two-wheeled robot neuron PID controller
  • 相关文献

参考文献6

二级参考文献18

  • 1黄金燕,葛化敏,唐明军.基于BP神经网络的PID控制方法的研究[J].微计算机信息,2006(09Z):278-280. 被引量:20
  • 2Grasser F, D'Arrigo A. JOE: A Mobile, Inverted pendulum[J]. IEEE Transaction on Industrial Electronics, 2002,49 ( 1 ) : 107- 114.
  • 3郑钧元.两轮自我平衡机器人之平衡控制[D].台湾:台湾国立中央大学,2003.
  • 4Pathak K, Franch J. Velocity and position control of a wheeled inverted pendulum by partial feedback linearization [ J ]. IEEE Transaction On Robotics ,2005,21 ( 3 ) :505-513.
  • 5Ren T J,Chen T C. Motion control for a two-wheeled vehicle using a self-tuning PID controller [ J ]. Control Engineering Practice , 2008 .16(3).365-375.
  • 6刘金琨.先进控制及其Matlab仿真[M].北京:北京电子工业出版社,2005..
  • 7刘金锟.先进PID控制MATLAB仿真[M].北京:电子工业出版社,2007.
  • 8杨文林,张竺英,张艾群.水下机器人主动升沉补偿系统研究[J].海洋工程,2007,25(3):68-72. 被引量:24
  • 9MartinTH HowardBD MarkH.Neural network design[M].北京:机械工业出版社,2002.197-221.
  • 10Ren Junjie, Zuo Quan, Li Hongxing. Structure Control Language and its Application in Control Algorithm Programming. International Conference on Measuring Technology and Mechatronics Automation (ICMTMA2010). 2010, 3.

共引文献40

同被引文献7

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部