摘要
针对目前质量对高密度内埋空空导弹总体设计的制约问题,运用粒子群优化算法对导弹主要参数进行优化设计。首先,通过分析空空导弹不同阶段的飞行特性,在现有导弹助推段运动模型和巡航段运动模型的基础上,采用数值积分法解算出导弹总体质量;其次,以最小起飞质量为目标函数,采用改进的粒子群优化算法,对导弹有效载荷、弹体相对质量系数、发动机结构系数、翼载、助推段比冲和巡航段比冲进行优化;最后,通过比较优化前后的弹道速度曲线和轴向过载曲线,对模型的优越性和优化结果的可信性进行检验。结果表明:通过优化设计导弹主要参数,不仅能减小导弹总质量和弹翼面积,而且还能保证导弹飞行性能基本不变,提高了导弹作战性能和内埋数量。为高密度内埋空空导弹的设计提供参考。
By using the Particle Swarm Optimization (PSO), this paper, optimizes main parameters of missile in the view of the problems in mass restricting the overall parameter design of inter air to air missile. Firstly, according to the flight characteristics of air to air missile at different stages, a numerical integration method is used to settle the mass of air to air missile based on the existing model of boost stage and cruise phase. Secondly, taking the minimal take-off mass as the objective function, the paper optimizes load mass, relation coefficient of projectile body, structure coefficient of engine, wing loading, boost stage and cruise phase specific impulse by Particle Swarm Optimization (PSO) algorithm. In the end, through dissertation comparison of the optimized velocity curve and deceleration-time curve with the original, the advantages and the reliability of the model are verified. The results show that the mass of missile can be reduced by optimizing, and the flight performance remains unchanged generally. This is for designing missile reference only.
作者
黄晨
方斌
敖齐
HUANG Chen;FANG Bin;AO Qi(Aeronautics Engineering College, Air Force Engineering University, Xi'an 710038, China)
出处
《空军工程大学学报(自然科学版)》
CSCD
北大核心
2018年第2期38-43,共6页
Journal of Air Force Engineering University(Natural Science Edition)
关键词
内埋空空导弹
总体质量
质量模型
粒子群优化算法
internal air to air missile
total mass
mass model
Particle Swarm Optimization algorithm