摘要
针对在云计算内网环境下实施入侵检测与用户异常行为分析的难题,文章采用Weka机器学习软件工具自带的典型分类算法对云计算入侵检测数据集进行分类研究,并通过软件工程方法实现了用于内网用户异常行为分类的朴素贝叶斯算法。对恶意行为和正常行为分类的实验结果显示,文章所实现的朴素贝叶斯算法具有较高的分类准确度,可以有效地对云计算入侵检测数据集中的内网用户行为进行分类分析与挖掘,证明了文章所提方案和算法的有效性。
In view of the problems of the implementation of intrusion detection and analysis of abnormal behavior under the cloud computing internal network environment, this paper does the classification research on the cloud intrusion detection datasets(CIDD) by using Weka machine learning classification algorithms, and realizes naive Bayesian algorithm for abnormal behavior classification of internal network users through the method of software engineering. Experimental results on the classification of malicious behavior and normal behavior show that the naive Bayesian algorithm implemented in the paper achieves higher classification accuracy. The algorithm can effectively classify and analyze the internal network user behaviors of CIDD, which proves the effectiveness of the proposed scheme and algorithm.
作者
陈红松
王钢
宋建林
CHEN Hongsong;WANG Gang;SONG Jianlin(School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing 100083, China;Railway Police College, Zhengzhou Henan 450053, China;Zhengzhou Railway Police Security Bureau, Zhengzhou Henan 450052, China)
出处
《信息网络安全》
CSCD
北大核心
2018年第3期1-7,共7页
Netinfo Security
基金
国家重点基础研究发展计划(973计划)[2013CB329605]
中央高校基本科研业务费专项资金[FRF-GF-17-B27]
公安部重大研究项目[201202ZDYJ017]
关键词
云计算
用户行为
入侵检测
机器学习
分类
cloud computing
user behavior
intrusion detection
machine learning
classification