摘要
M-矩阵被广泛应用于数学物理、控制论、电力系统理论等领域,关于非奇异M-矩阵最小特征值的估计成为研究的热点;利用相似变换不改变矩阵特征值给出不可约非奇异M-矩阵最小特征值的上下界;该方法所得估计结果仅依赖于M-矩阵的元素,易于计算;最后通过数值算例表明新估计式在一定条件改进了现有的相关结果.
M-matrix is widely used in mathematical physics,cybernetics,electric system and so on. In recent years,the bound estimates for the minimum eigenvalue of nonsingular M-matrix have become an important topic.The upper and lower bounds for the minimum eigenvalue of irreducible nonsingular M-matrix are given according to that the similar transform does not change the eigenvalue of a matrix. The estimating formula are easier to calculate since the estimated results only depend on the entries of M-matrix. Numerical example illustrates that the new inequalities improve the existing related results.
作者
钟琴
ZHONG Qin(Department of Mathematics, Jinjiang College, Sichuan University, Sichuan Pengshan 620860, Chin)
出处
《重庆工商大学学报(自然科学版)》
2018年第3期51-54,共4页
Journal of Chongqing Technology and Business University:Natural Science Edition
基金
四川省教育厅自然科学研究项目(18ZB0364)
四川大学锦江学院青年教师科研项目(QNJJ 2017 A09)
关键词
上下界
不可约
M-矩阵
最小特征值
upper and lower bounds
irreducible
M-matrix
minimum eigenvalue