期刊文献+

不可约M-矩阵最小特征值的上下界 被引量:2

Upper and Lower Bounds for the Minimum Eigenvalue of Irreducible M-matrix
下载PDF
导出
摘要 M-矩阵被广泛应用于数学物理、控制论、电力系统理论等领域,关于非奇异M-矩阵最小特征值的估计成为研究的热点;利用相似变换不改变矩阵特征值给出不可约非奇异M-矩阵最小特征值的上下界;该方法所得估计结果仅依赖于M-矩阵的元素,易于计算;最后通过数值算例表明新估计式在一定条件改进了现有的相关结果. M-matrix is widely used in mathematical physics,cybernetics,electric system and so on. In recent years,the bound estimates for the minimum eigenvalue of nonsingular M-matrix have become an important topic.The upper and lower bounds for the minimum eigenvalue of irreducible nonsingular M-matrix are given according to that the similar transform does not change the eigenvalue of a matrix. The estimating formula are easier to calculate since the estimated results only depend on the entries of M-matrix. Numerical example illustrates that the new inequalities improve the existing related results.
作者 钟琴 ZHONG Qin(Department of Mathematics, Jinjiang College, Sichuan University, Sichuan Pengshan 620860, Chin)
出处 《重庆工商大学学报(自然科学版)》 2018年第3期51-54,共4页 Journal of Chongqing Technology and Business University:Natural Science Edition
基金 四川省教育厅自然科学研究项目(18ZB0364) 四川大学锦江学院青年教师科研项目(QNJJ 2017 A09)
关键词 上下界 不可约 M-矩阵 最小特征值 upper and lower bounds irreducible M-matrix minimum eigenvalue
  • 相关文献

参考文献2

二级参考文献6

  • 1陈景良,陈向晖.特殊矩阵[M].北京:清华大学出版社,2000:239-276.
  • 2FIEDLER M,MARKHAM T.An Inequality for the Hadamard Product of an M-matrix and Inverse M-matrix [ J ]. Linear Algebra Appl, 1988(10l) : 1-8.
  • 3黄荣.Some Inequalities for the Hadamard Product and the Fan Product of Matrices [ J ].Linear Algebra and Its Applications,2008(428):1551-1559.
  • 4HORN R A,JOHNSON C R.Topics in Matrix Analysis [ M ] .New York:Cambridge University Press, 1991.
  • 5CHEN S C.A Lower Bound for the Minimum Eigenvalue of the Hadamard Product of Matrix [ J ].Linear Algebra Appl, 2004 (378) : 159-166.
  • 6ZHANG Xiao Dong Department of Mathematics.East China Normal University,Shanghai 200062.P.R.China E-mail:xdzhang2@hotmail.comLI Jiong Sheng Department of Mathematics.University of Science and Technology of China,Hefei 230026,P.R China.Spectral Radius of Non-negative Matrices and Digraphs[J].Acta Mathematica Sinica,English Series,2002,18(2):293-300. 被引量:5

共引文献9

同被引文献8

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部