期刊文献+

基于DBN和TSVM的混合入侵检测模型研究 被引量:4

RESEARCH ON HYBRID INTRUSION DETECTION MODEL BASED ON DBN AND TSVM
下载PDF
导出
摘要 针对传统机器学习方法在处理大规模入侵数据的检测精度低和检测速度慢等问题,提出一种基于深度学习的混合入侵检测模型DBN-PBT-TSVM。该模型利用深度信念网络DBN(Deep Belief Network)减少特征集的维度,获得原始数据集的最优的低维表示;综合对支持向量机TSVM(Twin Support Vector Machine)和偏二叉树的优势,构造了一种基于偏二叉树的对支持向量机多类分类器,对网络入侵数据进行识别。基于KDDCUP'99数据集实验比较的结果表明,DBN-PBT-TSVM模型实现了在保证分类性能的同时,还显著地降低了检测时间,尤其是在处理大规模数据时效果更明显,为入侵检测在处理大规模数据时提供了一种全新的思路。 The traditional machine learning method has low accuracy and slow speed in detection when dealing with large-scale data intrusion. This paper proposes a hybrid intrusion detection model named DBN-PBT-TSVM which is based on the deep learning. Deep Belief Network( DBN) is utilized to reduce the dimension of the feature set and then the model obtains the optimal low-dimensional representation of the original data set. With combination of Twin Support Vector Machine( TSVM) and partial binary tree,a multi-class classifier of TSVM is constructed based on the partial binary tree,which can identify the network data intrusion. The experimental results of KDDCUP'99 data set show that DBN-PBT-TSVM model can ensure the classification performance and also reduce the detection time,especially for largescale data. It provides a new idea for intrusion detection in dealing with large-scale data.
作者 张克君 鲜敏 Zhang Kejun;Xian Min(Department of Computer Science and Technology,Beijing Electronic Science and Technology Institute ,Beijing 100070, China;School of Computer Science and Technology, Xidian University, Xi' an 710071, Shaanxi, China)
出处 《计算机应用与软件》 北大核心 2018年第5期313-317,333,共6页 Computer Applications and Software
基金 国家自然科学基金项目(61772047)
关键词 深度学习 入侵检测 深度信念网络 偏二叉树 对支持向量机 Deep learning Intrusion detection Deep belief network Partial binary tree Twin support vector machine
  • 相关文献

参考文献3

二级参考文献41

  • 1Vapnik V N. The nature of statistical learning theory. New York:Springer, 2000.
  • 2Burges C J C. A tutorial on support vector ma- chines for pattern recognition. Data Mining and knowledge Discovery, 1998, 2(2): 121-167.
  • 3Mangasarian O L, Musicant D R. Lagrangian support vector machines. Journal of Machine Learning Research, 2001, 1:161-177.
  • 4Lee Y J, Mangasarian O L. SSVM: A smooth support vector machine for classification. Com- putational Optimization and Applications, 2001, 20(1) : 5-22.
  • 5Lee Y J, Mangasarian O L. RSVM: Reduced support vector machines. Proceedings of First SIAM International Conference on Data Mining,2001: 1-17.
  • 6Suykens J A K, Vandewalle J. Least squares support vector machine classifier. Neural pro- cessing Letters, 1999, 9(3): 293-300.
  • 7Mangasarian O L, Wild E W. Multisurface proximal support vector classification via gener- alized eigenvalues. IEEE transactions on Pattern Analysis and Machine Intelligence, 2006, 28 (1) : 69-74.
  • 8Fun G, Mangasarian O L. Proximal support vector machine classifiers. Proceedings KDD 2001.. Knowledge Discovery and Data Mining, 2001: 77-86.
  • 9Jayadeva, Khemchandani R, Chandra S. Twin support vector machines for pattern classifica- tion. IEEE transactions on Pattern Analysis and Machine Intelligence, 2007, 29(5):905-910.
  • 10Cristianini N, Shawe-Taylor J. An introduction to support vector machines and other kernel- based learning methods. Beijing: China Machine Press, 2005.

共引文献61

同被引文献22

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部