摘要
一个(νκλ)光正交码C(简记作(ν,κ,λ)-OOC),定义为一族长为ν,重量为k的(0,1)序列(称为码字)并满足:
(1)自相关性0vx1x1-1≤λ,对于任意x=(x0,x1…xv-1)∈C及任意整数i≠0(modv;
(2)互相关性0x1y1-1≤λ,对于任意两个相异码字x=(x0,x1…,xu1)∈C与y=(y0,y1,…,y1)∈C,及任意整数i.
Optical orthogonal code has good correlation properties. It has many important applications in optical code-division multiple access communication systems. Several direct constructions via skew starters and Weil's theorem are given for optimal (gv,5,1) optical orthogonal codes, where g∈{ 60,80,100,120,140,160,180} and v is a product of primes greater than 5. These improve the known existence results on optimal OOCs.
出处
《科学技术与工程》
2002年第4期2-4,共3页
Science Technology and Engineering
基金
国家自然科学基金(10071002)
校自选基金
关键词
质因子均模
最优光正交码
相关性
通讯系统
重量
optimal optical orthognal codes correlation prorerties communication systems