期刊文献+

重量为五的最优光正交码的一些结果

Some Results on Optimal Optical Orthogonal Codes with Weight Five
下载PDF
导出
摘要 一个(νκλ)光正交码C(简记作(ν,κ,λ)-OOC),定义为一族长为ν,重量为k的(0,1)序列(称为码字)并满足: (1)自相关性0vx1x1-1≤λ,对于任意x=(x0,x1…xv-1)∈C及任意整数i≠0(modv; (2)互相关性0x1y1-1≤λ,对于任意两个相异码字x=(x0,x1…,xu1)∈C与y=(y0,y1,…,y1)∈C,及任意整数i. Optical orthogonal code has good correlation properties. It has many important applications in optical code-division multiple access communication systems. Several direct constructions via skew starters and Weil's theorem are given for optimal (gv,5,1) optical orthogonal codes, where g∈{ 60,80,100,120,140,160,180} and v is a product of primes greater than 5. These improve the known existence results on optimal OOCs.
出处 《科学技术与工程》 2002年第4期2-4,共3页 Science Technology and Engineering
基金 国家自然科学基金(10071002) 校自选基金
关键词 质因子均模 最优光正交码 相关性 通讯系统 重量 optimal optical orthognal codes correlation prorerties communication systems
  • 相关文献

参考文献10

  • 1[1]Maric S V,Lau V K N. Multirate fiber-opticCDMA: system design and performance analysis. J Lightwave Technol,1998; 16:9 - 17
  • 2[2]Salehi J A, Brackett C A. Code division multiple access techniques in optical fiber networks -part Il: systems performance analysis.IEEE Trans Commun, 1989;37:834 - 842
  • 3[3]Yin J. Some combinatorial constructions for optical orthogonal codes. Discrete Math, 1998;185:201 - 219
  • 4[4]Chung F R K, Salehi J A, Wei V K. Optical orthogonal codes: design, analysis, and applications. IEEE Trans Inform Theory, 1989;35:595 ~604. Correction: IEEE Trans Inform Theory, 1992; 38:1429
  • 5[5]Ge G, Yin J. Constructions for optimal (v,4,1) optical orthogonal codes via skew starters and cyclotomic numbers. IEEE Trans InformTheory, to appear, 2002
  • 6[6]Chang Y, Fuji-Hara R, Miao Y. Combinatorial constructions of optimal optical orthogonal codes. Submitted,2001
  • 7[7]Tang Y, Yin J. The combinatorial construction of a class of optimal OOC. Submitted,2000
  • 8[8]Haani H. Balanced incomplete block designs and related designs.Discrete Math, 1975; 11:255 - 369
  • 9[9]Chen K, Zhu L. Existence of (q, k, 1) difference families with q a prime power andk=4,5. Designs, Codes and Cryptography, 1998;15:167 - 173
  • 10[10]Chen K, Ge G, Zhu L. Starters and related codes. J Statist Plann Inference,2000;86:379 - 395

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部