摘要
基于视觉的目标跟踪是计算机视觉的一个重要应用,对于视觉跟踪系统来说,跟踪算法的性能极为关键。本文提出了一种快速鲁棒的压缩跟踪方法,这种方法通过检测的方式来实现跟踪,即它通过在每一帧检测目标来实现对目标的持续跟踪。加权压缩特征的使用使得算法在存在遮挡的情况下效果很好,同时极限学习机的使用保证了跟踪速度的提升。实验结果表明算法的跟踪准确度很高,速度快,鲁棒性好,特别适用于一些存在着快速运动以及遮挡的场合。
Visual tracking system plays an important role in various computer vision applications. The tracking algorithm is very crucial for visual tracking system. A robust weighted compressive tracking method is proposed in this article. The proposed algorithm belongs to tracking by detection methods which regards tracking as detecting target in each frame. The use of weighted compressive features benefits the circumstance of occlusion while ELM guarantees the tracking speed of the algorithm. The experiment shows that the algorithm has good performance in terms of efficiency,accuracy and tracking speed. It is very robust and efficient in the case of abrupt movement and occlusion.
作者
李玄
刘倩玉
LI Xuan;LIU Qian-yu(Xi'an Institute of Navigation Technology,Xi'an 710068, Shaanxi,China;Xi'an Microelectronic Technology Institute,Xi'an 710000, Shaanxi,China)
出处
《科技视界》
2018年第8期22-24,14,共4页
Science & Technology Vision
关键词
目标跟踪
加权压缩特征
极限学习机
Target tracking
Weighted compressive features
Extreme machine learning