期刊文献+

基于喷嘴-共振腔系统的压电能量收集 被引量:2

Piezoelect ric Energy Harvesting Based on Nozzle-resonator System
下载PDF
导出
摘要 针对气流激振压电能量收集的机械激励问题,提出了一种基于喷嘴-共振腔系统的激振方法。应用CFD方法对压力流场进行分析;同时,结合压电效应,对输出电压进行仿真预测。结果表明,在入口压力为8KPa时,能产生峰-峰值33.6KPa以及频率1515Hz的振荡压力;压电片的振动位移峰-峰值为0.045mm,且其输出电压峰-峰值在40V左右。该方法能将环境气流转化为作用于压电材料上的周期性脉动压力载荷进而实现电能输出,从而验证了该压电能量收集方法的可行性。对于丰富压电能量收集在微功耗电子系统自供电的应用,具有重要价值和工程指导意义。 For the problem of mechanical exci tation of airflow-excitated piezoelectric energy harvesting,an excitation method based on nozzle-resonator system is proposed.CFD method is applied to analyze the pressure field.Meanwhile,combining with the piezoelectric effect,the output voltage is predicted by simulation.The result shows that under inlet pressure of 8 kPa,a periodic oscillation pressure is generated with the peak-to-peak pressure of 33.6 kPa and the frequency of 1515 Hz and a periodic vibration displacement of 0.045 mm and the output voltage of 40 V of the piezoelectric are predicted.The method can convert environmental airflow into periodic fluctuating pressure acting on piezoelectric materials to achieve electrical energy output,thereby verifying the feasibility of the piezoelectric energy harvesting.The conclusions provide references for riching the application of piezoelectric energy harvesting in self-powered micro-power electronic systems,it has important value and engineering guidance significance.
作者 邹华杰 王泽平 宋建 ZOU Hua-jie;WANG Ze-ping;SONG Jian(Changzhou Vocational Institute of Mechatronic Technology Jiangsu Changzhou 213164;Jiangsu Tobacco Industry Co.Ltd Xuzhou cigarette factory ,Jiangsu Xuzhou 221005)
出处 《科技视界》 2018年第7期31-33,共3页 Science & Technology Vision
基金 江苏省自然科学基金--青年基金(BK20160296) 江苏省大学生实践创新计划项目(201713114011Y)
关键词 自供电 压电能量收集 气流激振 喷嘴-共振腔系统 Self-powered Piezoelectric energy harvesting Airflow excitation Nozzle-resonator system
  • 相关文献

参考文献1

二级参考文献14

  • 1孙大明,邱利民,甘智华,等.风能驱动的热声制冷机:中国,200810060306.0[P].2008-9-3.
  • 2孙大明,余炎,敖文,等.风能驱动的热声冰箱:中国,200910152894.5[P].2010-3-17.
  • 3孙大明,余炎,敖文,等.风能驱动的热声汽车空调:中国,200910152941.6[P].2010-5-26.
  • 4McCanless G F, Boone J R. Noise Reduction in TransonicWind Tunnels [J]. The Journal of the Acoustical Societyof America, 1974, 56(5): 1501-1510.
  • 5Betts P C, Self-Induced Oscillations in an Open WaterChannel With Slotted Walls [J]. Journal of Fluid Mechan-ics, 1972, 55(03): 401-417.
  • 6Bilanin A J, Covert E E. Estimation of Possible Exci-tation Frequencies for Shallow Rectangular Cavities [J].AIAA Journal, 1973, 11(3): 347-351.
  • 7Rockwell D, Naudascher E. Review-Self-Sustaining Os-cillations of Flow Past Cavities [J]. ASME TransactionsJournal of Fluids Engineering, 1978, 100: 152-165.
  • 8Slaton W V, Zeegers J C H. An Aeroacoustically DrivenThermoacoustic Heat Pump [J]. The Journal of the Acous-tical Society of America, 2005, 117(6): 3628-3635.
  • 9Slaton W V,Zeegers J C H. Acoustic Power Measure-ments of a Damped Aeroacoustically Driven Resonator [J].The Journal of the Acoustical Society of America, 2005,118(1): 83-91.
  • 10Zhou S L, Matsubara Y. Experimental Research of Ther-moacoustic Prime Mover [J], Cryogenics, 1998, 38(8):813-822.

共引文献1

同被引文献23

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部