期刊文献+

Action Mechanism of Antibacterial Hydrolysate from Ruditapes philippinarum

Action Mechanism of Antibacterial Hydrolysate from Ruditapes philippinarum
下载PDF
导出
摘要 [Objectives] The antibacterial mechanism of protein hydrolysate from Ruditapes philippinarum( named RPPH) was studied in this article. [Methods]The integrity of bacteria's wall and membrane was determined by some traditional ways. [Results]The growth of Staphylococcus aureus and Bacillus subtilis were inhibited by RPPH in the logarithmic phase. The activity of alkaline phosphatase could be detected in the culture solution. The results showed that the protein content and the conductivity of two kinds of bacteria increased with the extension of incubation time. The results of scanning electron microscope revealed that it emerged the phenomenon of agglomeration with the extension of response time in the culture solution of S. aureus,and the cell shape became irregular,a large number of cells stuck together,afterwards intracellular material was released from bacteria,and the boundaries among cells completely disappeared. The cell surface of B. subtilis became rough,the cells began to adhere,intercellular boundaries became blurred,subsequently cells broke,and then intracellular material leaked out after treating for 9 h. The form of B. subtilis could be roughly identified from the remnants of the bacterial debris,and most of the bacteria had been completely cracked and died. Transmission electron microscope results showed that the surface of S. aureus became rough,with uneven distribution of cytoplasm,and darker substances appeared in the middle,followed by leakage of large numbers of intracellular material. Massive cells became dead when treating for 9 h. B. subtilis cells began to shrink,and cytoplasm was distributed unevenly. The significant phenomenon of plasmolysis and rupture of cell wall could be observed. Afterwards,intracellular material spilled out,only the residual and ambiguity nucleoplasm area could be seen,and cells were killed. [Conclusions] Therefore,it was speculated that the RPPH could destroy cell wall and membrane of the two kinds of bacteria,change the permeability of cells membrane,result in the leakage of intracellular substances and enter within the bacterial cells to affect their normal physiological metabolism which led to death. [Objectives] The antibacterial mechanism of protein hydrolysate from Ruditapes philippinarum( named RPPH) was studied in this article. [Methods]The integrity of bacteria's wall and membrane was determined by some traditional ways. [Results]The growth of Staphylococcus aureus and Bacillus subtilis were inhibited by RPPH in the logarithmic phase. The activity of alkaline phosphatase could be detected in the culture solution. The results showed that the protein content and the conductivity of two kinds of bacteria increased with the extension of incubation time. The results of scanning electron microscope revealed that it emerged the phenomenon of agglomeration with the extension of response time in the culture solution of S. aureus,and the cell shape became irregular,a large number of cells stuck together,afterwards intracellular material was released from bacteria,and the boundaries among cells completely disappeared. The cell surface of B. subtilis became rough,the cells began to adhere,intercellular boundaries became blurred,subsequently cells broke,and then intracellular material leaked out after treating for 9 h. The form of B. subtilis could be roughly identified from the remnants of the bacterial debris,and most of the bacteria had been completely cracked and died. Transmission electron microscope results showed that the surface of S. aureus became rough,with uneven distribution of cytoplasm,and darker substances appeared in the middle,followed by leakage of large numbers of intracellular material. Massive cells became dead when treating for 9 h. B. subtilis cells began to shrink,and cytoplasm was distributed unevenly. The significant phenomenon of plasmolysis and rupture of cell wall could be observed. Afterwards,intracellular material spilled out,only the residual and ambiguity nucleoplasm area could be seen,and cells were killed. [Conclusions] Therefore,it was speculated that the RPPH could destroy cell wall and membrane of the two kinds of bacteria,change the permeability of cells membrane,result in the leakage of intracellular substances and enter within the bacterial cells to affect their normal physiological metabolism which led to death.
作者 Minggui ZHANG Ling ZHAO Rong CAO Qi LIU Huihui SUN Yuxi WEI Minggui ZHANG;Ling ZHAO;Rong CAO;Qi LIU;Huihui SUN;Yuxi WEI(College of Life Sciences,Qing Dao University Qingdao 266071,china;Department of Food Engineering and Nutrition,Yellow Sea Fisheries Research Institute,Chinese Academy of Fishery Sciences ,Qingdao 266071,china)
出处 《Agricultural Biotechnology》 CAS 2018年第2期58-62,共5页 农业生物技术(英文版)
基金 Supported by National Natural Science Fund of China(31301587)
关键词 Ruditapes philippinarum Hydrolysate Antibacterial mechanism Ruditapes philippinarum Hydrolysate Antibacterial mechanism
  • 相关文献

参考文献7

二级参考文献88

共引文献400

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部