期刊文献+

融合Gate过滤机制与深度Bi-LSTM-CRF的汉语语义角色标注 被引量:4

The Integration of Gated Filtering Mechanism and Deep Bi-LSTM-CRF for Chinese Semantic Role Labeling
下载PDF
导出
摘要 语义角色标注的传统方法采用基于句法特征的统计机器学习方法。由于依存句法可以表示词语之间的语义关系,故在语义角色标注中取得了较好的性能;但该方法存在特征抽取过程繁琐,难以捕捉句子中长距离依赖等问题。随着深度学习的兴起,研究者将基于双向长短时记忆(Bidirectional Long Short-Term Memory,Bi-LSTM)神经网络模型用于语义角色标注。该模型可以自动学习特征,并对词与词之间的远距离依赖关系进行有效建模。本文提出融合Bi-LSTM-CRF模型与依存句法特征的方法,并且引入Gate过滤机制对词向量表示进行调整,以达到利用句法特征提高语义角色标注精度的同时,规避特征工程的繁琐。CPB上的实验结果表明,利用本文所提方法的汉语语义角色标注的F1值达到79.53%,比前人的方法有了较为显著的提升。 The traditional statistical methods which based on the syntactic features algorithm were frequently used for the Chinese semantic role labeling. Since the dependency parsing provides semantic relations between words, better performances in semantic role labeling were achieved. However, hand-crafted feature extraction process was complicated in such methods and it is difficult to capture the long range dependences in a sentence. With the development of deep learning, researchers have applied the bidirectional long short-term memory (Bi-LSTM) model to semantic role labeling, which is capable of learning features automatically and capturing long-range dependence. This paper proposed a method of combining model (Bi-LSTM) with dependency structure and introduced a Gated filtering mechanism (GFM) to adjust the word representation. Experimental results on CPB showed that the proposed method achieved 79.53% of F1 in Chinese semantic role labeling and significantly outperformed the previous work.
作者 张苗苗 刘明童 张玉洁 徐金安 陈钰枫 ZHANG Miaomiao;LIU Mingtong;ZHANG Yujie;XU Jinan;CHEN Yufeng(The School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044, China)
出处 《情报工程》 2018年第2期45-53,共9页 Technology Intelligence Engineering
基金 北京交通大学人才基金(KKRC11001532) 国家自然科学基金(61370130 61473294) 北京市自然科学基金(4172047)
关键词 汉语语义角色标注 Gate过滤机制 Bi-LSTM-CRF 依存句法分析 Chinese semantic role labeling gated filtering mechanism Bi-LSTM-CRF dependency parsing
  • 相关文献

参考文献5

二级参考文献45

  • 1周国光.汉语配价语法论略[J].南京师大学报(社会科学版),1994(4):103-106. 被引量:30
  • 2刘挺,车万翔,李生.基于最大熵分类器的语义角色标注[J].软件学报,2007,18(3):565-573. 被引量:73
  • 3Gildea D,Jurafsky D.Automatic Labeling of Semantic Roles[J].Computational Linguistics,2002,28(3):245-288.
  • 4Surdeanu M,Harabagiu S,Williams J,et al.Using Predicate-argument Structures for Information Extraction[C]//Proc.of the 41st Annual Meeting of the Association for Computational Linguistics.Tokyo,Japan:[s.n.],2003.
  • 5Xue Nianwen,Palmer M.Calibrating Features for Semantic Role Labeling[C]//Proc.of the Conference on Empirical Methods in Natural Language Processing.Barcelona,Spain:[s.n.],2004.
  • 6Pradhan S,Ward W,Hacioglu K,et al.Shallow Semantic Parsing Using Support Vector Machines[C]//Proc.of NAACL-HLT'04.Boston,Mass,USA:[s.n.],2004.
  • 7CoNLL 2008, http://www. yr-bcn. es/conll2008/,[EB].
  • 8CoNLL 2009, http://ufal. mff. cuni. cz/conll2009-st/, [EB].
  • 9Kadri Hacioglu. Semantic Role Labeling Using Dependency Trees [C]//Proc. of CoNLL-2004, Boston, MA,US,2004.
  • 10Johansson R. and Nugues P.. Dependency-based semantic role labeling of PropBank[C]//Proceedings of EMNLP-2008. 2008.

共引文献49

同被引文献29

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部