摘要
在许多社会或政治科学的问题中 ,个人的主观偏好信息往往是通过定性分析得到的 ,难以表示成效用形式 ,但却可以用序数形式来表示 .本文基于决策者对策略的偏好序数信息而不是支付函数或效用水平 ,讨论了一种新的博弈理论或模型 ,给出了若干序均衡的概念 ,并进行了例示分析 .这种基于序数信息的博弈理论可以看作是现有基于支付函数博弈理论的推广和补充 .
In many social or political science problems, the personal subjective preference information can be the result from qualitative analysis, which is difficult to be expressed in the utility form, but can be expressed in ordinal form. Based upon ordinal preference information the decision makers expressed, instead of the payoff function or utility level, this paper developed a rank ordering based game theory or model, proposed some concepts of rank ordering equilibrium, and gave some numerical demonstrations. This new game theory could be considered as the necessary and valuable generalization and supplement to the traditional utility or payoff based game theory.
出处
《管理科学学报》
CSSCI
2002年第4期83-87,共5页
Journal of Management Sciences in China
基金
国家自然科学基金资助项目 (79870 0 3 0 )
关键词
偏好序
博弈理论
纳什均衡
帕累托均衡
斯坦克博格均衡
preference rank order
game theory
Nash equilibrium
Pareto equilibrium
Stackelberg equilibrium