期刊文献+

基于信号传递的半监督谱聚类社区发现算法 被引量:4

Semi-supervised spectral clustering approach for community detection based on signal transmission
下载PDF
导出
摘要 针对基于谱聚类的社区发现方法以网络的邻接矩阵代替相似度矩阵造成效果受限的问题,提出通过信号传递原理衡量节点间相似度,构造复杂网络的相似矩阵,结合网络先验知识构造半监督谱聚类的拉普拉斯矩阵提升划分效果的设想,形成一种基于信号传递的半监督谱聚类社区发现方法。利用有限的先验知识辅助学习过程,在社区发现过程中引入部分节点的已知关系指导划分进程,达到更好效果。仿真结果表明,该方法在现实网络和LFR(Lancichinetti-FortunatoRadicchi)人工网络中均能取得良好的性能。 The spectral based community detection approaches replace similarity matrix with adjacency matrix,which might cause the problem of accuracy reduction.To solve the problem,an assumption was presented which evaluated the similarity between nodes and forged the similarity matrix based on signal transmission.The Laplacian of the semi-supervised spectral clustering was calculated,providing a semi-supervised spectral approach based on signal transmission.The limited knowledge was introduced into the learning process,and the pre-known relationships between nodes was used to guide detection.Experimental results show that the proposed method reaches an improved performance on real world network and LFR(Lancichinetti-Fortunato-Radicchi)benchmark.
作者 崔宇童 牛强 王志晓 CUI Yu tong;NIU Qiang;WANG Zhi xiao(School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 264209, Chin)
出处 《计算机工程与设计》 北大核心 2018年第5期1201-1205,1213,共6页 Computer Engineering and Design
基金 国家自然科学基金项目(51674255) 中国博士后基金特别资助基金项目(2015T80555) 江苏省博士后基金项目(1501012A)
关键词 社区发现 谱聚类 半监督学习 拉普拉斯矩阵 信号传递 community detection spectral clustering semi-supervised learning Laplacian matrix signal transmission
  • 相关文献

参考文献3

二级参考文献58

  • 1王玲,薄列峰,焦李成.密度敏感的半监督谱聚类[J].软件学报,2007,18(10):2412-2422. 被引量:94
  • 2AMARAL L A N, SCALA A, BARTHELEMY M, et al. Classes of small-world networks [J]. Proceedings of the National ACademy Sciences USA,2000,97 (21) i 11149--11152. ' :.
  • 3REDNER S. How popular is your paper.'? An empirical study of the ci- tation distribution[ J]. European Physical Journal B, 1998,4 (2) : 131-134.
  • 4pASTOR-SATORRAS R, VESPIGNANI A. Epidemic dynamics and endemic states in complex networks [ J ]. Physical Roviow r:, 2001, 63(6) :066117,.
  • 5DREWES G, BOUWMEESTER T. Global approaches to protein-pro- tein interactions [J ]. Current Opinion in Cell Bio ogy, 2003,15 (2) : 199-205,.
  • 6GIRVAN M, NEWMAN M E J. Community structure in social and bio- logical networks[ J ] .: Proceedings of the National Academy Scie- nces USA,2002,99 (1:2) : 7821 7826.
  • 7KERNIGHAN B W, IIN S.-An efficient heuristic procedure for part.i- tioning graphs [ J ]. Bell System Technical Journal, 1970,49 (,2) : 291-307. ".
  • 8POTHEN" A, SIMON H, LIOU K P. Partitioning sparse matrices with eigenvect0rs of graphs[J]: SIAM Ooumal on Matdx Analysis and Application, 1990,11 (3) :430-452.
  • 9NEWMAN M E J. Fast algorithm for detecting community structure in networks[J]. Physical Review E,2004,69(6) :066133,.
  • 10CLAUSET A, NEWMAN M E J, MOORE C. Finding community Structure in very large networks [J ] i' Physical Review E, 2 ;70 (6) :0661 t 1, ",.

共引文献56

同被引文献24

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部