期刊文献+

基于信息量的工控网络异常检测技术 被引量:6

Abnormal detection technology of industrial network based on information quantity
下载PDF
导出
摘要 为解决传统工业网络异常检测系统具有误报率高、状态构建不够灵活等问题,提出一种基于信息量的双层确定性有限自动机模型(IDDFA)。引入信息量和时间参数的概念,通过状态之间的信息衰减智能提取实际SCADA网络当中主要状态,在内存操作的粒度上构建一个次级DFA,具备内存操作上的语义分析功能。实验结果表明,该方法在已有的基础上,有效改进了工业控制系统网络当中的异常流量检测。 To solve the problem that the traditional industrial network anomaly detection system has high false alarm rate and insufficient state construction,a two-level deterministic finite automata model(IDDFA)based on information was proposed.The concept of information volume and time parameter was introduced,through the information attenuation between the states to intelligently extract the actual state of the actual SCADA network,and build a secondary DFA on the granularity of the memory operation to provide semantic analysis for memory operations.The analysis of the experimental results shows that the method is improved on the basis of existing methods,and the abnormal flow detection in the industrial control system network is improved.
作者 程相 周安民 郑荣锋 刘嘉勇 CHENG Xiang;ZHOU An-min;ZHENG Rong-feng;LIU Jia-yong(College of Electronics and Information Engineering, Sichuan University, Chengdu 610065, China;College of Cybersecurity, Sichuan University, Chengdu 610065, China)
出处 《计算机工程与设计》 北大核心 2018年第5期1225-1230,1238,共7页 Computer Engineering and Design
关键词 确定性有限自动机 S7协议 内存操作 安全 自提取 场景指纹 信息量 DFA S7 protocol memory operation security self-extraction fingerprint information
  • 相关文献

参考文献2

二级参考文献56

共引文献23

同被引文献56

引证文献6

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部