期刊文献+

基于截断核范数的视频前景与背景分离 被引量:2

Video foreground-background separation based on truncated nuclear norm
下载PDF
导出
摘要 为解决鲁棒主成分分析模型(RPCA)中核范数不是矩阵秩函数最佳近似的问题,提出截断核鲁棒主成分分析模型(TNSRPCA)。使用截断核范数替代传统的核范数进行低秩约束,将稀疏部分添加正则化约束克服动态背景产生的扰动,为解决截断核范数使用两步迭代法计算量巨大的问题,提出部分奇异值阈值算子进行求解,提高计算效率。实验结果表明,该模型在视频前景与背景分离中获得了较好的分离效果和抗噪声鲁棒性。 To deal with the problem that the nuclear norm of the robust principal component analysis model(RPCA)is not the best approximation of the matrix rank function,a model called truncated nuclear robust principal component analysis model(TNSRPCA)was proposed.The nuclear norm was replaced by truncated nuclear norm for low rank constraint.The regular constraint for sparse was added to remove the dynamic background interference.The approach consistently uses a two-step iterative strategy to recover the low rank components,which needs huge computation work.To solve this problem,apartial singular value thresholding operator was proposed.As a result,computing efficiency was improved.Experimental results show that the proposed models achieve better effects on the foreground-background separation,and possess superior robustness against noise.
作者 宣晓 余勤 XUAN Xiao;YU Qin(School of Electrical Engineering and Information Technology, Sichuan University, Chengdu 610065, China)
出处 《计算机工程与设计》 北大核心 2018年第5期1415-1421,共7页 Computer Engineering and Design
关键词 前景背景分离 鲁棒主成分分析 截断核范数 部分奇异值阈值算子 正则化约束 foreground-background separation robust principal component analysis truncated nuclear norm partial singular value thresholding operator regular constraints
  • 相关文献

参考文献5

二级参考文献79

  • 1万缨,韩毅,卢汉清.运动目标检测算法的探讨[J].计算机仿真,2006,23(10):221-226. 被引量:121
  • 2Wei Zhiqiang,Ji Xiaopeng,Wang Peng.Real-time moving object detection for video monitoring systems[J].Journal of Systems Engineering and Electronics,2006,17(4):731-736. 被引量:18
  • 3WRIGHT J, PENG Yi-gmg, MA Yi. Robust principal component analysis : exact recovery of corrupted low-rank matrices by convex opti- mization[ C ]//Advance in Neural Information Processing Systems. 2009 : 2080- 2088.
  • 4WU Xiao-jun,JOSEF K,YANG Jing-yu,et al. A new direct LDA (D- LDA) algorithm for feature extraction in flce recognition [ C ]//Proe of the 17th International Conference on Pattern Recognition. 2004:545- 548.
  • 5HYVARINEN A, OJA E. Independent component analysis: algo- rithms and applications [Jl. Noural Networks,2000,'13(4-5) :411- 430.
  • 6ZHAO Ying,ATKESON C G. Implementing projection pursuit learning [J]. IEEE Trans on Neural Networks,1996,7(2) :362-373.
  • 7NICOLAS G, FRANCOIS G. A multilevel approach Ior nonnegative matrix faetorization [ J ]. Journal of Computational and Applied Mathematics, 2012,236 ( 7 ) : 1708-1723.
  • 8BURGES C J C. Dimension reduction:a guided tour[ J ]. Founda- tions and Trends in Machine Learning,2009,2(4) :275-365.
  • 9AILON N, CHAZELLE B. Faster dimension reduction [ J ]. Communi- cations of the ACM,2010,53(2) :97-104.
  • 10KE Qi-fa,KANADE T. Robust L1 norm factorization in the psence of outliers and missing data by alternative convex programming[ C]// Proc of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2004:739-746.

共引文献101

同被引文献7

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部