期刊文献+

分数阶微分方程初值问题的Runge-Kutta型法

Numerical Solutions of the Initial Value Problem for Fractional Differential Equations by Runge-Kutta-Based Method
下载PDF
导出
摘要 文章主要把经典的Runge-Kutta方法应用到求解分数阶常微分方程的初值问题中,并且给出其算法格式. This paper developes a Runge-Kutta method to solve Initial Value Problem of Fractional Ordinary Differential Equations.
作者 王颖 樊孝仁 CHEN Hehua(Taiyuan University,Taiyuan 030024 ,Chin)
出处 《太原师范学院学报(自然科学版)》 2018年第1期33-37,共5页 Journal of Taiyuan Normal University:Natural Science Edition
关键词 RUNGE-KUTTA方法 分数阶常微分方程 数值解 hypercube node code minimum spanning tree
  • 相关文献

参考文献3

二级参考文献18

  • 1K.B.Oldham and J.Spanier.The Fractional Calculus[M].New York,Academic Press,1974.
  • 2I.Podlubny.Fractional Differential Equations[M].New York,Academic Press,1999.
  • 3R.C.Koeller.Polynomial operators,Stieltjes convolution,and fractional calculus in hereditary mechanics[J].Acta Mechanica,1986,58:251-264.
  • 4R.C.Koeller.Application of fractional caculus to the theory of viscoelasticity[J].J.Appl.Mech.,1984,51:229-307.
  • 5M.Lchise,Y.Nagayanagi and T.Kojima.An analog simulation of noninteger order transfer functions for analysis of eletrode processes[J].Electroanal.Chem.,1971,33:253-265.
  • 6O.Heaviside.Electromagnetic Theory[M].New York,Chelsea,1971.
  • 7N.Sugimoto.Burgers equation with a fractional derivative:hereditary effects on nonlinear acoustic waves[J].Fluid Mech.,1991,225:631-653.
  • 8A.A.Kilbas,H.M.Srivastava and J.J.Trujillo.Theory and Application of Fractional Differ-ential Equations[M].New York,Elsevier,2006.
  • 9C.P.Li and W.H.Deng.Remarks on fractional derivative[J].Appl.Math.Comput.,2007,187:774-784.
  • 10Bai Zhanbing,Lü Haishen.Positive solutions for boundary value problem of nonlinear fractional differential equation[J].J.Math.Anal.Appl.,2005,311:495-505.

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部