期刊文献+

利用功率谱最大最小平均比的频谱感知算法 被引量:2

Spectrum Sensing Algorithm Using the Ratio of Average Value of Maximum and Minimum Power Spectral
下载PDF
导出
摘要 由于载波频偏未知和噪声不确定性影响,信号功率谱的最大值和最小值不能根据单个频点来准确估计。该文提出利用功率谱最大最小平均比的频谱感知算法。利用基频附近一段功率谱的平均值作为功率谱最大值估计,利用功率谱中点频率附近一段的平均值作为功率谱最小值估计,将此二者之比作为检测统计量。推导了算法的虚警概率,得到了判决门限。加性高斯白噪声信道和瑞利衰落信道下的仿真结果表明:该算法性能优于基于功率谱分段对消频谱感知算法(PSC)和基于功率谱的平均比值算法(PSRA),降低了载波频偏未知和噪声不确定性对频谱感知算法性能的影响。 Owing to the influence of unknown carrier offset and noise uncertainty,the maximum value and the minimum value of signal's power spectral were unable to be evaluated by frequency single point. The spectrum sensing algorithm using the ratio of average value of maximum and minimum power spectral was proposed. This algorithm was specifically designed as follows. Firstly,the maximum value was estimated by the power spectral average of neighboring points to the base frequency,and the minimum value was estimated by the power spectral average of neighboring points to the midpoint frequency. Secondly,the ratio of the maximum and the minimum value was used as the detection statistics. Finally,the algorithm's false alarm probability and a detection threshold were deducted. The simulation results in Additive White Gaussian Noise channel and Rayleigh fading channel show that the proposed algorithm is better than the PSC、PSRA algorithm,and the influence of the unknown carrier offset and noise uncertainty on the algorithm is reduced.
作者 毛翊君 赵知劲 吕曦 MAO Yi-jun;ZHAO Zhi-jin;LV Xi(School of Communication Engineering, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, China)
出处 《信号处理》 CSCD 北大核心 2018年第4期409-416,共8页 Journal of Signal Processing
基金 "十二五"国防预研项目(41001010401)
关键词 频谱感知 功率谱 载波频偏 噪声不确定性 spectrum sensing power spectral carrier offset noise uncertainty
  • 相关文献

参考文献4

二级参考文献43

  • 1Kolodzy P. Specteum Policy Task Force: Findings and Recommendations. International Symposium on Advanced Radio Technologies (ISART), 2003.
  • 2Corderiro C, Challapali K, Birru D. IEEE 802.22:the first worldwide wireless standard based on cognitive radios. Proceedings of IEEE Press, 2005.
  • 3H aykin S. Cognitive radio: brain-empowered wireless communications. IEEE JSAC, 2005,23(2).
  • 4Shellhammer S, Shankar S, Dandra R. Performance of power detector sensors of DTV signals in IEEE 802.22 WRANs. ACM 1st International Workshop on Technology and Policy for Accessing Spectrum(TAPAS), 2006.
  • 5Tandra R,Sahai A.Fundamental limits on detections in low SNR undernoise uncertainty. Proceedings of the Wireless COM 2005, 2005.
  • 6Shellhammer S, Shankar S, Dandra R. Performance of power detector sensors of DTV signals in IEEE 802.22 WRANs.ACM 1st International Workshop on Technology and Policy for Accessing Spectrum (TAPAS),2006.
  • 7池方玉.低轨卫星通信系统上行链路频谱感知技术研究.中国科学院研究生院硕士学位论文.2009.
  • 8Aleon-Garcla.Probabilityandrandomprocessesforelectricalengineering.Reading,MA:Addison-Wesley,1994.
  • 9Kay S M.Fundamentals of statistical signal processing.Englewood Cliffs, N J, Prentice-Hall, 1998.
  • 10Haykin S. Cognitive Dynamic Systems: Radar, Control, and Radio[J]. Proceedings of the IEEE, 2012, 100(7): 2095- 2103.

共引文献26

同被引文献8

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部