期刊文献+

图像纹理分类方法研究进展和展望 被引量:55

Texture Classification:State-of-the-art Methods and Prospects
下载PDF
导出
摘要 纹理分类是计算机视觉和模式识别领域的一个重要的基本问题,也是图像分割、物体识别、场景理解等其他视觉任务的基础.本文从纹理分类问题的基本定义出发,首先,对纹理分类研究中存在的困难与挑战进行阐述;接下来,对纹理分类方面的典型数据库进行全面梳理和总结;然后,对近期的纹理特征提取方法的发展和现状进行归类总结,并对主流纹理特征提取方法进行了详细的阐述和评述;最后,对纹理分类发展方向进行思考和讨论. Texture is a fundamental characteristic of many types of images. Texture classification is one of the essential tasks in the field of computer vision and pattern recognition. It is also the basis of other complex vision tasks, such as image segmentation, object recognition and scene understanding. In this paper, we first address the importance of texture classification and summarize the difficulties and challenges in the development of texture feature extraction approaches.Then we discuss the existing texture databases which are generally acknowledged as public evaluation bases for texture classification methods. Next, we review recent achievements in the study of texture feature development and provid detail discussion on prominent texture feature descriptors. Finally, we point out the future directions of texture classification.
作者 刘丽 赵凌君 郭承玉 王亮 汤俊 LIU Li;ZHAO Ling-Jun;GUO Cheng-Yu;WANG Liang;TANG Jun(College of Information System and Management, National University of Defense Technology, Changsha 410000;College of Electronic Science and Engineering, National University of Defense Technology, Changsha 410000;National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190)
出处 《自动化学报》 EI CSCD 北大核心 2018年第4期584-607,共24页 Acta Automatica Sinica
基金 湖南省自然科学基金杰出青年基金(2017JJ1007)资助~~
关键词 纹理分类 特征提取 深度学习 局部特征描述 计算机视觉 Texture classification, feature extraction, deep learning, local descriptors, computer vision
  • 相关文献

参考文献3

二级参考文献160

  • 1张志龙,李吉成,沈振康.基于局部沃尔什变换的纹理特征提取方法研究[J].信号处理,2005,21(6):589-596. 被引量:6
  • 2薄华,马缚龙,焦李成.图像纹理的灰度共生矩阵计算问题的分析[J].电子学报,2006,34(1):155-158. 被引量:203
  • 3陈洋,王润生.结合Gabor滤波器和ICA技术的纹理分类方法[J].电子学报,2007,35(2):299-303. 被引量:25
  • 4Ojala T, Pietikainen M, Harwood D. A comparative study of texture measures with classification based on featured distributions. Pattern Recognition, 1996, 29(1): 51-59.
  • 5Pietik/iinen M, Ojala T, Xu Z. Rotation-invariant texture classification using feature distributions. Pattern Recogni- tion, 2000, 33(1): 43-52.
  • 6Ojala T, Valkealahti K, Oja E, Pietikginen M. Texture dis- crimination with multidimensional distributions of signed gray-level differences. Pattern Recognition, 2001, 34(3): 727-739.
  • 7Ojala T, Pietikainen M, Maenpaa T. Multiresolution gray- scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7): 971-987.
  • 8Pietikainen M, Hadid A, Zhao G Y, Ahonen T. Com- puter Vision Using Local Binary Patterns. Berlin: Springer- Verlag, 2011. 193-202.
  • 9Hafiane A, Seetharaman G, Zavidovique B. Median bi- nary pattern for textures classification. In: Proceedings of the 2007.International Conference on Image Analysis and Recognition. Montreal, Canada: Springer, 2007. 387-398.
  • 10Guo Z H, Zhang L, Zhang D, Zhang S. Rotation invariant texture classification using adaptive LBP with directional statistical features. In: Proceedings of the 17th IEEE In- ternational Conference on Image Processing. Hong Kong, China: IEEE, 2010. 285-288.

共引文献727

同被引文献456

引证文献55

二级引证文献254

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部