摘要
以移动设备、车辆、飞机、飓风等移动对象不确定性轨迹预测问题为背景,将大规模移动对象数据作为研究对象,以频繁轨迹模式挖掘、高斯混合回归技术为主要研究手段,提出多模式移动对象轨迹预测模型,关键技术包括:1)针对单一运动模式,提出一种基于频繁轨迹模式树FTP-tree的轨迹预测方法,利用基于密度的热点区域挖掘算法将轨迹点划分成不同的聚簇,构建轨迹频繁模式树,挖掘频繁轨迹模式预测移动对象连续运动位置.不同数据集上实验结果表明基于FTP-tree的轨迹预测算法在保证时间效率的前提下预测准确性明显优于已有预测算法.2)针对复杂多模式运动行为,利用高斯混合回归方法建模,计算不同运动模式的概率分布,将轨迹数据划分为不同分量,利用高斯过程回归预测移动对象最可能运动轨迹.实验证明,相比于基于隐马尔科夫模型和卡尔曼滤波的预测方法,所提方法具有较高的预测准确性和较低的时间代价.
This study aims to solve the problem of predicting uncertain trajectories of moving objects, including mobile devices, vehicles, airplanes, and hurricanes. In order to design a general schema of trajectory prediction on large-scale moving objects data, techniques of frequent trajectory patterns mining and Gaussian mixture regression model are employed,and a multiple-motion-pattern trajectory prediction model is proposed. The proposed key techniques include: 1) as for simple motion patterns, a new trajectory prediction algorithm based on frequent trajectory pattern tree(FTP-tree) is proposed, which employs a density based region-of-interest discovery approach to partition a large number of trajectory points into distinct clusters. Then, it generates a frequent trajectory pattern tree to forecast continuous locations of moving objects. Experimental results show that the FTP-tree based trajectory prediction algorithm performs better than existing prediction approaches with the guarantee of time efficiency. 2) Gaussian mixture regression approach is used to model complex multiple motion patterns, which calculates the probability distribution of different types of motion patterns, as well as partitions trajectory data into distinct components, in order to predict the most possible trajectories of moving objects via Gaussian process regression. Experimental results show a high accuracy and low time consumption on trajectory prediction, as compared to the hidden Markov model approach and the Kalman filter one.
作者
乔少杰
韩楠
丁治明
金澈清
孙未未
舒红平
QIAO Shao-Jie;HAN Nan;DING Zhi-Ming;JIN Che-Qing;SUN Wei-Wei;SHU Hong-Ping(School of Cybersecurity, Chengdu University of Information Technology, Chengdu 610225;School of Management, Chengdu University of Information Technology, Chengdu 610103;College of Computer Science, Beijing University of Technology, Beijing 100124;School of Data Science and Engineering, East China Normal University, Shanghai 200062;School of Computer Science, Fudan University, Shanghai 201203;School of Software Engineering, Chengdu University of Information Technology, Chengdu 610225)
出处
《自动化学报》
EI
CSCD
北大核心
2018年第4期608-618,共11页
Acta Automatica Sinica
基金
国家高技术研究发展计划(863计划)(2014BAI06B01)
国家自然科学基金(61772091
61100045
91546111
61501063
61501064
61772138)
教育部人文社会科学研究规划基金(15YJAZH058)
教育部人文社会科学研究青年基金(14YJCZH046)
四川省教育厅资助科研项目(14ZB0458)
成都市软科学项目(2015-RK00-00059-ZF)
四川高校科研创新团队建设计划资助(18TD0027)
成都信息工程大学中青年学术带头人科研基金(J201701)
成都信息工程大学引进人才科研启动项目(KYTZ201715
KYTZ201750)资助~~
关键词
移动对象数据库
多模式
轨迹预测
频繁轨迹模式
Moving objects databases, multiple-motion-pattern, trajectory prediction, frequent trajectory patterns