期刊文献+

基于局部位置信息和消息投递度的受控传染路由算法 被引量:5

Location Position and Message Delivery Ratio Based Controlled Epidemic Routing for DTNs
下载PDF
导出
摘要 容延/容断网络(DTN)具有间断连接、时延高和节点缓存受限等特点,因而其路由策略面临巨大的挑战.为了提高容延网络的消息投递率,本文利用位置信息和相遇信息来选择下一跳节点,并基于此提出了受控传染路由算法LPDR.该算法在消息源节点和中继节点上采取不同的策略.在消息源节点上运用局部位置信息,利用节点的局部位置信息来控制消息的扩散范围.在中继节点上,综合利用多种效用信息筛选出最优的节点进行消息复制,从而更好地控制了消息的冗余.仿真实验表明在基于Random Waypoint节点移动模型的网络环境中,与LC-Epidemic、Epidemic、Prophet相比,LPDR的消息投递率最高,平均跳数最少,网络负载比LC-Epidemic和Epidemic分别低约25%和15%. Delay/Disruption Tolerant Network( DTN) has characteristics of intermittent connection,long delay and limitation of buffer space. So the routing strategy faces with a great challenge. To improve the message delivery rate,this paper selects the next hop node by using the location information and encounter information. Based on this,we propose a controlled epidemic routing algorithm LPDR.The algorithm adopts different strategies on the message source node and relay node. On the message source node,the local position information is used to control the spread of the message. On the relay node,we use various kinds of utility information to filter out the best node for the message replication,which can better control the message redundancy. Simulation experiments have been conducted and the results demonstrate that LPDR has higher message delivery ratio and less average hop count than other three algorithms and the overhead ratio of LPDR is less than 25% and 15% of LC-Epidemic and Epidemic respectively in a Random Waypoint mobility model based DTN environment.
作者 陆芳 李建波 宋有美 王夫沭 LU Fang;LI Jian-bo;SONG You-mei;WANG Fu-shu(College of Computer Science & Technology, Qingdao University, Qingdao 266071, China)
出处 《小型微型计算机系统》 CSCD 北大核心 2018年第5期918-923,共6页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(61502261 61572457 61379132)资助 山东省重点研发计划项目(2016GGX101032)资助
关键词 容延/容断网络 拓扑知识 路由设计 局部位置信息 消息投递率 Delay/Disruption topology knowledge routing design location position information message delivery ratio
  • 相关文献

参考文献3

二级参考文献63

  • 1沈荣骏.我国天地一体化航天互联网构想[J].中国工程科学,2006,8(10):19-30. 被引量:130
  • 2TORGERSON J L, CLARE L, WANG S Y, et al. The deep impact network experiment operations center[C]//Proc of IEEE Aerospace Conference.2009:1-12.
  • 3IVANCIC W, EDDY W M, WOOD L, et al. Delay/disruption-tolerant network testing using a LEO satellite[C]//Proc of the 8th NASA Earth Science Technology Conference.2008.
  • 4AKYILDIZ I F, AKAN O B, CHEN Chao, et al. The state of the art in InterPlanetary Internet[J].IEEE Communications Magazine,2004,42(7):108-118.
  • 5CCSDS.SCCSDS714.0-4,Spacecommunicationsprotocolspecification(SCPS):transportprotocol(SCPS-TP)[S/OL].[2006-10].http://Publicccsds.org/publicationslarchivel714xob2pdf.
  • 6CCSDS.CCSDS727.0-B-2,CCSDSfiledeliveryprotocol(CFDP)[S/OL].(2002-10)[2007-01].http://public.ccsds.org/publications/arcive/727xob2s.pdf.
  • 7CCSD S. CCSDS file delivery protocol (CFDP), part 1: introduction and overview, CCSDS 720.1-G-3[R].Washington DC: CCSDS Secretariat,2007.
  • 8CCSD S. CCSDS file delivery protocol(CFDP),part 2: implementers guide, CCSDS 720.2-G-3[R].Washington DC: CCSDS Secretaricat,2007.
  • 9CCSDS. CCSDS file delievery protocol (CFDP), part 3: interoperability testing final report,CCSDS 720.3-G-1[R].Washington DC: CCSDS Secretariat,2007.
  • 10McMAHON A, FARRELL S. Delay-and disruption-tolerant networking[J].IEEE Internet Computing,2009,13(6):82-87.

共引文献8

同被引文献19

引证文献5

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部