期刊文献+

一种HEVC压缩域的运动目标检测方法 被引量:1

Moving Object Detection Method in HEVC Compressed Domain
下载PDF
导出
摘要 运动目标检测是智能视频分析的一个重要环节,现有的检测方法主要是在像素域中进行处理,存在计算复杂度高、检测目标不完整等问题.提出一种HEVC压缩域的运动目标检测方法,利用HEVC在编码过程中产生的运动矢量、划分结构、编码模式等编码信息,首先对运动矢量进行预处理得到运动矢量幅值图,然后利用编码划分结构和编码模式在空间域上对运动矢量幅值进行滤波以及更新Intra编码块的运动矢量幅值,接着对运动矢量幅值图进行膨胀和时间域的滤波,最终得到运动目标.实验结果表明,本方法大幅地降低了计算复杂度,并具有良好的运动目标检测效果. Moving object detection is the key part of intelligent video analysis. The current detection methods are mainly designed in the pixel domain,and there have some problems,such as high computational complexity and incomplete object detection. To solve these issues,this paper proposes a moving object detection method in HEVC compressed domain bying using encoding information such as motion vector,partition structure and encoding mode. First,the motion vectors are preprocessed to obtain the amplitude map of motion vector. And then the amplitude map is filtered based on the spatial domain,and the amplitudes in Intra coding blocks are updated by using the coding partition structure and the coding mode. After that,the amplitude map is expanded,and filtered in the time domain.Finally,the moving objects are detected by using the amplitude map. The experimental results show that the proposed method can reduce the computational complexity greatly and have a good effect on moving object detection.
作者 杨洋 滕游 商明将 朱威 YANG Yang;TENG You;SHANG Ming-jiang;ZHU Wei(College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China;United Key Laboratory of Embedded System of Zhejiang Province,Hangzhou 310023 ,China)
出处 《小型微型计算机系统》 CSCD 北大核心 2018年第5期1079-1084,共6页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(61401398)资助 浙江省自然科学基金项目(LY17F010013)资助
关键词 运动目标检测 HEVC 压缩域 运动矢量 编码模式 moving object detection HEVC compressed domain motion vector coding mode
  • 相关文献

参考文献6

二级参考文献41

  • 1陈亮,陈晓竹,范振涛.基于Vibe的鬼影抑制算法[J].中国计量学院学报,2013,24(4):425-429. 被引量:21
  • 2梁凡.AVS视频标准的技术特点[J].电视技术,2005,29(7):12-15. 被引量:36
  • 3高文,王强,马思伟.AVS数字音视频编解码标准[J].中兴通讯技术,2006,12(3):6-9. 被引量:23
  • 4刘方青,石旭利,张兆扬.基于EM聚类的H.264压缩域视频对象实时分割算法[J].中国图象图形学报,2007,12(10):1819-1822. 被引量:5
  • 5ZHANG Xiao-bo, LlU Wen-yao, LV Da-wei. Automatic vid- eo object segmentation algorithm based on spatio-tempo- ral information [J]. Journal of Optoelectronics : Laser, 2009,20(12) : 1641-1645.
  • 6Luciano S Silva, Jacob Scharcanski. Video segmeantation based on motion coherence of particles in a video se- quence[J]. IEEE Transaction on Image Processing, 2010, 19(4) :1036-1048.
  • 7WANG Ting-huai. Probabilistic motion diffusion of labeling priors for coherent video segmentation[J] IEEE Transac- tion on Multimedia, 2012,14(2) .. 389-400.
  • 8Porikli F, Bashir F, Sun H. Compressed domain video ob- ject segmentation[J]. IEEE Transaction on Circuits andSystems for Video Technology, 2010,20(1) : 2-14.
  • 9Chert Y M,Bajic I V,Saeedi P. Moving region segmenta- tion from compressed video using global motion estima- tion and Markov radom fields [J]. IEEE Transaction on multimedia, 2011,13(3) :421-431.
  • 10Poppe C,Bruyne S D, Paridaens T. Moving object detec- tion in the H. 264/AV0 compressed domain for video sur- veillance applications[J]. J. Vis. Commun. Image R, 2009,20:428-437.

共引文献34

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部