期刊文献+

基于客户Web时空行为轨迹的兴趣点预测方法

Method of interest points prediction based on customer web temporal behavior trajectory
原文传递
导出
摘要 客户兴趣点预测是大数据环境下提高电子商务推荐精度的关键,针对现有客户兴趣预测未综合考虑客户多种行为和时序时间的影响问题。为研究一种基于客户Web时空行为轨迹的兴趣点预测方法,构建了包含客户、时间、行为和兴趣点四层子网的客户Web时空行为超网络模型,并引入行为影响因子,提出基于超边相似性的兴趣点预测算法,在建立连通矩阵的基础上,通过邻接矩阵计算、超三角形判定和超边相似度计算,得到相似度最高的超边,该超边对应的兴趣点即为预测结果。实验结果表明,该方法在时间误差允许范围内,兴趣点预测准确度随时间精度的减小而增加,与传统的标签预测方法相比,预测准确度由56.2%提高至74%。 Interest point is the key to improving the accuracy of e-commerce recommendation under big data environment. However, the existing predictive research ignores the comprehensive impact of various customers' behaviors and time series on interest points. In order to make up this gap, the article sets up a customer Web space and time super network model which involves four subnets: customer, time,behavior and interest point, and establishes the influence factors of behavior. Then, based on similarity of superlink prediction method and the establishment of connectivity matrix, the adjacency matrix is calculated and super triangle judgement is made, so that the most similar super edge and the best prediction results of interest points are obtained. Finally, experiment shows that the precision of interest prediction gets better with the decrease of time accuracy within the allowable range of time error. Compared with the traditional method of label prediction, the prediction accuracy is improved from 56.2% to 74%.
作者 陈冬林 夏琪 代四广 CHEN Donglin;XIA Qi;DAI Siguang(Research Center for E-Business and Intelligent Services, Wuhan University of Technology, Wuhan 430070, Chin)
出处 《科技导报》 CAS CSCD 北大核心 2018年第7期74-79,共6页 Science & Technology Review
基金 国家自然科学基金项目(71172043) 中央高校基本科研业务费专项(165215001) 教育部留学回国人员科研启动基金项目(2013-693) 湖北省教育厅科学技术研究项目(B2016403)
关键词 兴趣点预测 Web时空行为 超网络 超边相似性 interest points prediction Web time-space behavior super network superedge similarity
  • 相关文献

参考文献5

二级参考文献99

  • 1王茜,杨莉云,杨德礼.面向用户偏好的属性值评分分布协同过滤算法[J].系统工程学报,2010,25(4):561-568. 被引量:24
  • 2Jing HAN,Ming LI,Lei GUO.SOFT CONTROL ON COLLECTIVE BEHAVIOR OF A GROUP OF AUTONOMOUS AGENTS BY A SHILL AGENT[J].Journal of Systems Science & Complexity,2006,19(1):54-62. 被引量:23
  • 3邢春晓,高凤荣,战思南,周立柱.适应用户兴趣变化的协同过滤推荐算法[J].计算机研究与发展,2007,44(2):296-301. 被引量:148
  • 4郑先荣,汤泽滢,曹先彬.适应用户兴趣变化的非线性逐步遗忘协同过滤算法[J].计算机辅助工程,2007,16(2):69-73. 被引量:14
  • 5Liu JG, Zhou T, Wang BH. Research progress of personalized recommendation system. Progress in Natural Science, 2009,19(1): 1-15 (in Chinese with English abstract).
  • 6Ma H, Yang HX, Lyu MR, King I. SoRec: Social recommendation using probabilistic matrix factorization. In: Proc. of the ACM Int’l Conf. on Information and Knowledge Management. ACM Press, 2008. 978-991. [doi: 10.1145/1458082.1458205].
  • 7Ma H, King I, Lyu MR. Learning to recommend with social trust ensemble. In: Proc. of the Annual Int’l ACM SIGIR Conf. on Research and Development in Information Retrieval. ACM Press, 2009. 203-210. [doi: 10.1145/1571941.1571978].
  • 8Guo L, Ma J, Chen ZM, Jiang HR. Learning to recommend with social relation ensemble. In: Proc. of the ACM Int’l Conf. on Information and Knowledge Management. ACM Press, 2012. 2599-2602. [doi: 10.1145/2396761.2398701].
  • 9Jamali M, Ester M. TrustWalker: A random walk model for combining trust-based and item-based recommendation. In: Proc. of the ACM SIGKDD Conf. on Knowledge Discovery and Data Mining. ACM Press, 2009. 397-405. [doi: 10.1145/1557019. 1557067].
  • 10Jamali M, Ester M. A matrix factorization technique with trust propagation for recommendation in social networks. In: Proc. of the ACM Conf. on Recommender Systems. ACM Press, 2010. 135-142. [doi: 10.1145/1864708.1864736].

共引文献302

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部