期刊文献+

热蒸发工艺中碳源微观结构对SiC晶须生长的影响 被引量:1

Influence of carbon source microstructure on the growth of SiC whisker via thermal evaporation
下载PDF
导出
摘要 通过高温热蒸发硅粉工艺,以鳞片石墨、膨胀鳞片石墨、纳米炭黑和微米炭黑为碳源制备SiC晶须,研究了碳源结构对SiC晶须生长的影响。采用X射线衍射、扫描电镜和透射电镜等手段对不同碳源和制得样品的微观形貌和结构进行表征。结果表明:SiC晶须更容易在膨胀鳞片石墨和纳米炭黑表面生长,碳源具有乱层堆垛石墨结构和合适的晶粒尺寸是SiC晶须生长的决定性因素。 Using graphite flake, expanded graphite flake, nanosized pyrolytic carbon black and microsized thermal carbon black as carbon sources, SiC whiskers were prepared by thermal evaporation of silicon powders at high temperature and the effect of carbon source microstructure on the growth of SiC whiskers was investigated. The morphology and microstructure of different carbon sources and the as-obtained product were characterized by X-ray diffraction, scanning electron microscopy and transmission electron microscopy.The results showed that SiC whiskers was prefer to grow on the surface of expanded graphite flake and nanosized pyrolytic carbon black.The critical factors for promoting the formation of SiC whiskers were that the carbon sources should possess turbostratically stacked graphite structure and appropriate grain size.
作者 朱辉 李轩科 董志军 丛野 袁观明 崔正威 李艳军 Zhu Hui;Li Xuanke;Dong Zhijun;Cong Ye;Yuan Guanming;Cui Zhengwei;Li Yanjun(The State Key Laboratory of Refractories and Metallurgy,Wuhan University of Science and Technology, Wuhan 430081;Hubei Province Key Laboratory of Coal Conversion and New Materials,Wuhan University of Science and Technology,Wuhan 430081;The Research Center for Advanced Carbon Materials, Hunan University,Changsha 410082)
出处 《化工新型材料》 CAS CSCD 北大核心 2018年第4期197-200,共4页 New Chemical Materials
基金 国家自然科学基金(51372177)
关键词 SIC晶须 碳源结构 乱层堆垛石墨 晶粒尺寸 SiC whisker,carbon source microstructure,turbostratically stacked graphite,grain size
  • 相关文献

参考文献2

二级参考文献24

  • 1赵晓鹏,田晓滨,周本濂,李世红.短纤维增强复合材料的仿生模型──Ⅱ 弱结合界面的强度理论[J].金属学报,1994,30(4). 被引量:11
  • 2王启宝,郭梦熊,安征.稻壳合成β-SiC晶须及生长机理研究[J].化工新型材料,1996,24(2):21-24. 被引量:14
  • 3韩敏芳,李伯涛,郭梦熊.碳化硅晶须品质及影响因素[J].人工晶体学报,1996,25(4):343-347. 被引量:3
  • 4Iijima S. Helical microtubes of graphitic carbon[J]. Nature, 1991,354(6348) :56-58.
  • 5Dai H J, Wong E W, Lu Y Z, et al. Synthesis and characteriza tion of carbide nanorods[J]. Nature,1995,75(6534) :769- 762.
  • 6Sun X H,Li C P,Wong W K,et al. Formation of silicon carbide nanotubes and nanowires via reaction of silicon (from disprop- ortionation of silicon monoxide) with carbon nanotuhes[J]. J Am Chem Soe, 2002,124(48) : 14464-14471.
  • 7Li H J,Li Z J, Meng A L. SiC nanowire networks[J]. J Alloys Compd, 2003,352 (1-2) : 279-282.
  • 8Bechelany M, Brioude A, Stadelmann P, et al. Very long SiC- based coaxial nanocables with tunable chemical eomposition[J]. Adv Funct Mater,2007,17(16) :3251-3257.
  • 9Li Y B,Xie S S, Zhou X P, et al. Large-scale synthesis of fl-SiC nanorods in the arc-discharge[J]. J Cryst Growth, 2001,223 ( 1- 2) : 125-128.
  • 10Chiu S C, Huang C W,Li Y Y. Synthesis of high-purity silicon carbide nanowires by a catalyst-free Arc-discharge method[J]. J Phys Chem C,2007,111(28) : 10294-10297.

共引文献1

同被引文献12

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部