期刊文献+

基于谱聚类带有节点特征的社区发现算法 被引量:3

Community detection based on spectral clustering with node attributes
下载PDF
导出
摘要 提出一类基于谱聚类算法的带有节点特征的社区发现算法(SCSA),该算法首先将带有节点特征的网络图转化为加权图,其中边的权重用节点特征相似度度量,然后将谱聚类算法应用到加权图上进行社区检测.SCSA算法将带有节点特征的网络图分成K个社区,每个社区内节点不仅连接良好而且具有相似的特征属性.注意到不是所有节点的特征在社区划分过程中都是有用的,与划分无关的特征信息会降低社区发现算法的准确度.为此,提出了一类节点特征权重自调整机制嵌入到谱聚类中以提高社区检测质量.数值实验的结果验证了所提算法的有效性. A community detection approach(SCSA)based on the spectral clustering method that combines both structural information and node attributes information was proposed.Firstly,the SCSA algorithm converted the node-attributed graph to a weighted graph,where the edge weights are measured by attribute similarities.Then,the spectral clustering was applied on the weighted graph.The SCSA algorithm partitioned a network associated with attributes into K communities in which the nodes are not only well connected but also have similar attributes.Notice that not all attributes are useful in the clustering process,and irrelevant attributes can lower the overall accuracy of community detection by adding noise.To address this issue,an attribute weight self-adjustment mechanism embedded into spectral clustering was proposed in order to improve the community detection quality.Experiments demonstrate the effectiveness of the proposed algorithm.
作者 唐风琴 丁文文 TANG Fengqin;DING Wenwen(School of Mathematical Sciences, Huaibei Normal University, Huaibei 235000 ,China;School of Mathematics and Statistics ,Lanzhou University, Lanzhou 730000, China)
出处 《中国科学技术大学学报》 CAS CSCD 北大核心 2018年第2期161-172,共12页 JUSTC
基金 国家自然科学基金(11301236) 安徽省自然科学基金(1608085QG169) 安徽省高校自然科学研究重点项目(KJ2017A377 KJ2017A376)资助
关键词 社区发现 谱聚类 随机分块模型 归一化互信息 community detectionl spectral clustering stochastic block model normalized mutual information
  • 相关文献

参考文献1

二级参考文献18

  • 1Newman M E J. The structure and function of complex networks[J]. SIAM Review, 2003, 45(2): 167-256.
  • 2Li Y D, Liu J, Liu C L. A comparative analysis of evolutionary and memetic algorithms for community detection from signed social networks [J]. Soft Computing, 2014, 18(2): 329-348.
  • 3Bu Z, Zhang C C, Xia Z v, et al. A fast parallel modularity optimization algorithm (FPMQA) for community detection in online social network [J]. Knowledge-Based Systems, 2013, 50: 246-259.
  • 4Shi C, Cai Y N, Fu D, et al. A link clustering based overlapping community detection algorithm [J]. Data &. Knowledge Engineering, 2013, 87: 394-404.
  • 5Li K, Pang Y. A unified community detection algorithm in complex network [J]. Neurocomputing, 2014, 1300): 36-43.
  • 6Bennetta L, Liub S S, Papageorgioub L G, et al. A mathematical programming approach to community structure detection in complex networks [C]/ / Proceedings of the 22nd European Symposium on Computer Aided Process Engineering. London, UK: Elsevier, 2012: 1387-1391.
  • 7Girvan M, Newman M E 1. Community structure in social and biological networks[J]. Proceedings of the National Academy of Sciences, 2002, 99(12): 7821- 7826.
  • 8Fortunato S. Community detection in graphs [J]. Physics Reports, 2010, 486(3): 75-174.
  • 9Wu F, Huberman B A. Finding communities in linear time: A physics approach[J]. The European Physical Journal B, 2004, 38(2): 331-338.
  • 10Newman M E J. Fast algorithm for detecting community structure in networks[J]. Physical review E, 2004, 69(6): 066133(1-5).

共引文献1

同被引文献9

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部