期刊文献+

用于光谱控制的棱镜扩束装置精密装调特性分析 被引量:1

Analysis on Precision Assembly Characteristics of Prism Expander Applied to Spectrum Control
原文传递
导出
摘要 线宽压窄模块是光刻用准分子激光器的重要组成部分。线宽压窄模块中棱镜组及光栅的装配角度直接影响系统输出特性。为了进一步改进准分子激光器线宽压窄模块工程化安装与调试工艺,研究了棱镜扩束器中棱镜角度偏差对系统线宽及能量的影响。通过理论推导及实验验证,分析了单个棱镜角度偏转对准分子激光系统线宽及能量的影响,确定了每个棱镜的装调误差;实验结果与理论分析结果基本符合。根据确定的装调误差优化设计线宽压窄模块的装调方法,对模块的光谱控制工程化具有一定的指导意义。 Linewidth narrowing module is an important component of excimer laser for lithography.The installation angles of prisms and gratings affect the system output characteristics directly.In order to improve installation and debugging technique of linewidth narrowing module,we study the influence of the angle deviation of the prism in the prism expander on the energy and linewidth of the system.Through the theoretical derivation and experimental verification,we analyze the influence of individual prism angle deflection on the energy and linewidth of the excimer laser system,and determine the alignment error of each prism.The experimental results are in good agreement with the theoretical analysis results.The alignment method for optimizing the linewidth narrowing module design according to the alignment error has guiding significance for the spectrum control engineering.
作者 王倩 赵江山 周翊 Wang Qian;Zhao Jiangshan;Zhou Yi(Academy of Opto-Electronics, Chinese Academy of Sciences, Beijing 100094, China;Beijing Excimer Laser Technology and Engineering Center, Beijing 100094, China;University of Chinese Academy of Sciences, Beijing 100094, China)
出处 《中国激光》 EI CAS CSCD 北大核心 2018年第4期99-103,共5页 Chinese Journal of Lasers
基金 国家科技重大专项(2013ZX02202)
关键词 激光器 准分子激光器 窄线宽 棱镜扩束器 装调误差 lasers excimer laser narrow linewidth prism expander alignment error
  • 相关文献

参考文献3

二级参考文献46

  • 1李红霞,楼祺洪,董景星,叶震寰,魏运荣.准分子激光线宽压缩方法的研究[J].光学与光电技术,2004,2(4):44-47. 被引量:5
  • 2褚玉喜,罗才雁.四棱镜扩束染料激光器的多线振荡[J].光学学报,1993,13(7):642-648. 被引量:1
  • 3R. L. Fork, O. E. Martinez, J. P. Gordon. Negative dispersion using pairs of prisms[J]. Opt. Lett., 1984, 9(5): 150-152.
  • 4T. W. Hansch. Repetitively pulsed tunable dye laser for high resolution spectroscopy[J]. Appl. Opt., 1972, 11(4): 895-898.
  • 5D. J. Schroeder, R. L. Hilliard. Echelle efficiencies: theory and experiment[J]. 1980, 19(16): 2833-2841.
  • 6T. J. Pacala, I. S. McDermid, J. B. Laudenslager. Ultranarrow linewidth, magnetically switched, long pulse, xenon chloride laser[J]. Appl. Phys. Lett., 1984, 44(7): 658.
  • 7F. J. Duarte. Multiple-return-pass beam divergence and the linewidth equation[J]. Appl. Opt., 2001, 40(18): 3038-3041.
  • 8K. Kakizaki, Y. Sasaki, T. Inoue. High-repetition-rate (6 kHZ) and long-pulse-duration (50 ns) ArF excimer laser for sub-65 nm lithography[J]. Review of Scientific Instruments, 2006, 77(3): 035109.
  • 9K. Kakizaki, T. Saito, K. Mitsuhashi et al.. High-repetition rate ArF excimer laser for 193-nm lithography[C]. SPIE, 2007, 4000(2000): 1397-1404.
  • 10R. S. Hargrove, J. A. Painser. Tunable, gfficient VUV generation using ArF pumped stimulated Raman scattering in H2[C]. Fechnique Digest. Topical Meeting on Excimer Lasers. 1979 Tharleston, South Carolina. paper ThA6-1.

共引文献19

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部