期刊文献+

基于增强指数加权均值比的SAR图像边缘检测算法 被引量:4

Edge Detection Algorithm for SAR Image Based on Enhanced ROEWA
下载PDF
导出
摘要 研究学者们认为指数加权均值比(ROEWA)算子存在无法计算SAR图像边缘方向的缺陷。为此,进行了一些通过方向滤波器为ROEWA算法施加方向的工作。该文对ROEWA算法进行了深入的探讨和分析,通过对ROEWA算法卷积过程的进一步推导,获得了ROEWA算法像素级的观测公式。根据推导结果,提出了一种增强的ROEWA(EROEWA)边缘检测算法。首先,利用新的卷积策略将ROEWA的公式项解耦,获得了4个方向的指数加权均值;然后把SAR图像旋转45°,再利用新的卷积策略获取额外的4个方向的指数加权均值;最后,将8个方向的指数加权均值表示成8个矢量,通过矢量合成求出边缘强度和边缘方向。实验结果表明,提出的EROEWA算法不仅具有优秀的边缘方向计算能力,与ROEWA算法相比,边缘强度的提取也有显著的增强效果。 Researchers generally consider that Ratio Of Exponentially Weighted Averages (ROEWA) can not calculate the edge directions of SAR images. Therefore, some directional filters are used to add directions to ROEWA. In this paper, an Enhanced ROEWA (EROEWA) algorithm is proposed. Through the further derivation of the ROEWA algorithm convolution process, the pixel-level observation formula of ROEWA algorithm is obtained. First, a new convolution strategy is used to decouple the ROEWA formula to obtain exponentially weighted averages over the four directions. Second, the SAR images are rotated by 45° and exponentially weighted averages of the four additional directions are calculated. Finally, exponentially weighted averages of eight directions are expressed as eight vectors, and edge intensity and direction are solved by vector synthesis. Experimental results show that the EROEWA has a significant enhancement effect on the edge intensity and the direction.
作者 胡炎 单子力 高峰 HU Yan;SHAN Zili;GAO Feng(CETC Key Laboratory of Aerospace Information Applications,Shijiazhuang 050081,China)
出处 《电子与信息学报》 EI CSCD 北大核心 2018年第5期1166-1172,共7页 Journal of Electronics & Information Technology
基金 中国电子科技集团公司航天信息应用技术重点实验室开放基金(EX166290025)~~
关键词 指数加权均值比 观测公式 矢量 增强指数加权均值比 Ratio Of Exponentially Weighted Averages (ROEWA) Observation formula Vector Enhanced Ratio Of Exponentially Weighted Averages (EROEWA)
  • 相关文献

参考文献9

二级参考文献103

  • 1余洪山,王耀南.一种改进型Canny边缘检测算法[J].计算机工程与应用,2004,40(20):27-29. 被引量:76
  • 2赵银娣,张良培,李平湘.一种方向Gabor滤波纹理分割算法[J].中国图象图形学报,2006,11(4):504-510. 被引量:26
  • 3贾承丽,匡纲要.一种改进的SAR图像边缘检测方法[J].电子与信息学报,2007,29(2):379-382. 被引量:11
  • 4贾承丽,赵凌君,吴其昌,匡纲要.基于遗传算法的SAR图像道路网检测方法[J].计算机学报,2007,30(7):1186-1194. 被引量:14
  • 5Canny J F. A computational approach to edge detection [ J ]. IEEE Transactions on Pattern Analysis Machine Intelligence, 1986, 8(11) : 679-698.
  • 6Shen J, Castan S. An optimum linear operator for step edge detection [ J ]. Graph Models Image Processing, 1992,54 ( 2 ) : 112-133.
  • 7Canny J F. A computational approach to edge detection [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986,8 (6) :679-698.
  • 8Dimou A, Jager G, Frangos P. Adaptive edge enhancement in SAR images training on the data vs. training on simulated data [ C ]//Proceedings of International Conference on Image Processing. Piscataway, New Jersey, USA: IEEE Press, 2001 : 493 -496.
  • 9Bovik A C. On detecting edges in speckle imagery [ J ]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1988,36 (10) : 1618-1627.
  • 10Touzi R, Lopes A, Bousquet P. A statistical and geometrical edge detector for SAR images [ J ]. 1EEE Transactions on Geoscience and Remote Sensing, 1998, 26(6) :764-773.

共引文献67

同被引文献30

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部