期刊文献+

基于极小值原理的增程式客车能量管理问题规律分析 被引量:4

Analysis for the Energy Management Problem of Extended-Range Electric City Buses Based on Pontryagin's Minimum Principle
下载PDF
导出
摘要 为了提高增程式城市客车的燃油经济性,利用极小值原理设计在线能量管理策略是一种有效方法,然而难点在于如何避免协态变量的迭代计算。在对动力电池组的特性和输出功率进行合理假设的基础上,利用状态方程和协态方程推导出协态变量与动力电池组开路电压二者的关系方程。通过对该关系方程进行近似求解,得到了上述二者的比值可以视为常数的结论。将基于该结论所设计的在线能量管理策略应用于不同实际工况,并将结果与全局最优解对比,发现该策略的性能仅低于全局最优水平0.5%。由此可见,该策略是一种可以得到在线应用的最优能量管理策略。 In order to improve the fuel economy of extended-range electric city buses,using the Pontryagin's minimum principle to design on-line energy manage strategies is an effective solution,however,the challenge lies in how to avoid the iteration calculation of the co-state variable. Based on reasonable assumptions for battery characters and its output power,the state and adjoint equations areapplied to deduce the equation between the co-state variable and the battery open-circuit voltage.Through solving the equation approximately,it is concluded that the ratio of the two variables could be seemed constant. An on-line energy management strategy, which is designed based on such conclusion,is applied over different real-world driving cycles,the results show that the performance difference of this strategy is less than the 0. 5% compared with the global optimal level. Therefore,this strategy is an optimal energy management strategy for on-line applications.
作者 杜光乾 谢海明 卢紫旺 黄勇 DU Guangqian;XIE Haiming;LU Ziwang;HUANG Yong(State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China)
出处 《重庆理工大学学报(自然科学)》 CAS 北大核心 2018年第3期10-17,共8页 Journal of Chongqing University of Technology:Natural Science
基金 上海汽车工业科技发展基金会1530项目
关键词 能量管理 极小值原理 增程式电动汽车 开路电压 协态变量 energy optimization minimum principle extended-range electric vehicles open-circuit voltage co-state variable
  • 相关文献

参考文献2

二级参考文献42

  • 1Overington S, Rajakaruna S. Review of PHEV and HEV operation and control research for future direction [ C ]//Power Electronics for Distributed Generation System. 2012:385-392.
  • 2Wirasingha S G, Emadi A. Classification and Review of Control Strategies for Plug-In Hybrid Electric Vehicles [ J ]. IEEE Transactions on Vehicular Technology, 2009, 60( 1 ) :907-914.
  • 3Melo P, Araujo R E, de Castro R. Overview on energy management strategies for electric vehicles-Modelling, trends and research perspectives [ C ]//International Youth Conference on Energetics. [ S.l. ] : IEEE, 2011 : 1-8.
  • 4Gong Q, Li Y, Peng Z. Trip-based optimal power manage- ment of plug-in hybrid electric vehicles[ J]. IEEE Trans- actions on Vehicular Technology, 2008, 57 ( 6 ) : 3393-3401.
  • 5Gurkaynak Y, Khaligh A, Emadi A. State of the art power management algorithms for hybrid electric vehicles [ C ]// Vehicle Power and Propulsion Conference, 2009 : 388-394.
  • 6Anderson C, Pettit E. The effects of APU characteristics on the design of hybrid control strategies for hybrid elec- tric vehicles[ J]. Training,2010(4) :10-29.
  • 7Hochgraf C G, Ryan M J, Wiegman H L. Engine control strategy for a series hybrid electric vehicle incorporating load-leveling and computer controlled energy management [ J ]. SAE, 1996,960230 : 11-24.
  • 8Jeffrey Gonder, Tony Markel. Energy management strate- gies for plug-in hybrid electric vehicles [ J ]. SAE World Congress,2007 ( 1 ) :290.
  • 9Tribioli L, Onori S. Analysis of energy management strat- egies in plug-in hybrid electric vehicles: Application to the GM Chevrolet Volt [ C ]//Proceedings of the Ameri- can Control Conference,2013:5966-5971.
  • 10Haiming Xie, Guangyu Tian, Yong Huang, et al. A four stage energy control strategy and fuel economy simulation for extended-range electric city bus [ C ]//EVS27,2013.

共引文献28

同被引文献19

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部