摘要
利用多值映射的不动点定理,给出了一类带有非局部积分边值Hadamard型分数阶积分微分包含解的存在性定理,得到了解存在性的充分条件,并将已有的单值结果推广到多值情形.
In this paper,based on fixed-point theorem for multi-value maps,we give the existence of solutions for the following Hadamard fractional order integro-differential inclusions with integral boundary value Problems:{Dαx( t) ∈ F( t,x( t)),1 ≤ t ≤ e,1 ≤ α ≤ 2,x( 1) = x( 0),x( e) =1/Γ( β) integral from 1 to e ( loge/s)(β-1)x( s)/sds,β 0,Where Dα is Hadamard type fractional derivative,Kx( t) = integral from 1 to t k( t,s,x( s)) ds is a integral operator,and F:[1,e]× R × R→P( R) is a multi-valued map. The aim of this paper is to extend known single value result to multi-valued framework.
作者
杨丹丹
YANG Dan-dan(School of Mathematical Science, Huaiyin Normal University, Huaian Jiangsu 223300, Chin)
出处
《淮阴师范学院学报(自然科学版)》
CAS
2018年第1期1-6,共6页
Journal of Huaiyin Teachers College;Natural Science Edition
基金
国家自然科学基金资助项目(11426141)
江苏省自然科学基金资助项目(BK20170067)
关键词
Hadamard型分数阶导数
积分微分包含
积分边值条件
多值映射
Hadamard-type fractional derivative
integro-differential inclusions
integral boundary value conditions
multi-valued maps