期刊文献+

基于PID-BPNN的矿用铅酸蓄电池SOC在线估计 被引量:1

Mine lead-acid battery SOC online estimation based on PID-BPNN
下载PDF
导出
摘要 针对矿山避难硐室安全供电系统中铅酸蓄电池内化成过程中检测是否已经达到满电荷量,且在组装铅酸蓄电池时需要考虑电池均衡问题都需要进行准确估算SOC的问题,提出基于BP神经网络的PID控制通过修正反馈误差来实现铅酸蓄电池SOC在线估计。采用实验的方法获取数据,选取与电池SOC相关的因子作为BP神经网络的输入参数,最终准确在线预测蓄电池SOC值。仿真结果表明,基于BP神经网络的PID控制的铅酸蓄电池SOC估计的精度大大提高,同时为电池管理系统提供一个新的估计方法。 Since accurate SOC estimation is needed when detecting whether the lead-acid battery has reached the full charge during its internal formation and when considering the battery balance problem during the assembling of the lead-acld bat- tery in the safe power supply system of the mine refuge chamber, SOC online estimation of lead-acld battery is achieved based on PID control of BPNN by means of feedback error modification. The experimental method is adopted to obtain data, and the factors related to battery SOC are selected as the input parameters of BP neural network to perform accurate online prediction of the battery's SOC values. The simulation results show that the lead-acld battery SOC estimation based on PID control of BPNN has improved a lot in its precision, and meanwhile provides a new estimation method for the battery management system.
作者 姜长泓 徐宏 JIANG Changhong;XU Hong(School of Electrical and Electronic Engineering, Changchun University of Technology, Changchun 130012, China)
出处 《现代电子技术》 北大核心 2018年第10期113-116,共4页 Modern Electronics Technique
基金 吉林省科学技术厅计划项目(20140204029SF)~~
关键词 安全供电系统 铅酸蓄电池 矿用 内化成 PID-BP神经网络 SOC在线估计 safe power supply system lead-acid battery mine internal formation PID-BPNN SOC online estimation
  • 相关文献

参考文献2

二级参考文献13

  • 1谭永红.基于BP神经网络的自适应控制[J].控制理论与应用,1994,11(1):84-88. 被引量:91
  • 2王耀南,童调生,蔡自兴.基于神经元网络的智能PID控制及应用[J].信息与控制,1994,23(3):185-189. 被引量:44
  • 3Trohzsch U, Kanoun O, Trankler H - R. Electrochimica Acta 2006, 51 (8 -9) :1664 - 167.
  • 4Gregory L Plett. LiPB Dynamic Cell Models for Kalman - Filter SOC Estimation [ C]. Proceedings of the 19th International Electric Vehicle Symposium, Busan, 2002.
  • 5SUN Li, TAN Xin -de, XIE Fu -chun.. The Battery Management System for Electric Vehicle Based on Estimating Battery" s States [ CD]. Brussels Belgium: EVslS, 1998.
  • 6O. Barbarisi, F. Vasca, and L. Glielmo. State of charge kalman filter estimator for automotive batteries [ J]. Control Engineering Practice, 14:267 275, 2006.
  • 7Chen C L,IEE Proc Control Theory and Applications,1996年,143卷,2期,200页
  • 8夏红,自动化仪表,1996年,11卷,4期,41页
  • 9高明裕,张红岩.蓄电池剩余电量在线测量[J].电测与仪表,2000,37(9):28-31. 被引量:30
  • 10董明哲,张殿龙,武俊峰.基于BP神经网络的Ni-MH电池容量预测[J].哈尔滨理工大学学报,2000,5(3):115-117. 被引量:5

共引文献66

同被引文献10

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部