期刊文献+

The Lp,q-stability of the Shifts of Finitely Many Functions in Mixed Lebesgue Spaces Lp,q(Rd+1)

The Lp,q-stability of the Shifts of Finitely Many Functions in Mixed Lebesgue Spaces Lp,q(Rd+1)
原文传递
导出
摘要 The stability is an expected property for functions, which is widely considered in the study of approximation theory and wavelet analysis. In this paper, we consider the L^p,q-stability of the shifts of finitely many functions in mixed Lebesgue spaces L^p,q(R^d+1). We first show that the shifts Φ(·- k) (k∈Z^d+1) are L^p,q-stable if and only if for any ξ ∈R^d+1,∑κ∈Z^d+1 ]|Φ^^(ξ + 2πκ)]^2 〉 0. Then we give a necessary and sufficient condition for the shifts of finitely many functions in mixed Lebesgue spaces L^p,q(R^d+1) to be L^p,q-stable which improves some known results. The stability is an expected property for functions, which is widely considered in the study of approximation theory and wavelet analysis. In this paper, we consider the L^p,q-stability of the shifts of finitely many functions in mixed Lebesgue spaces L^p,q(R^d+1). We first show that the shifts Φ(·- k) (k∈Z^d+1) are L^p,q-stable if and only if for any ξ ∈R^d+1,∑κ∈Z^d+1 ]|Φ^^(ξ + 2πκ)]^2 〉 0. Then we give a necessary and sufficient condition for the shifts of finitely many functions in mixed Lebesgue spaces L^p,q(R^d+1) to be L^p,q-stable which improves some known results.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2018年第6期1001-1014,共14页 数学学报(英文版)
基金 Supported by the National Natural Science Foundation of China(Grant Nos.11371200,11401435,11601383and 11671214) Hundred Young Academia Leaders Program of Nankai University
关键词 Mixed Lebesgue spaces L^p q-stability semi-convolution Mixed Lebesgue spaces, L^p,q-stability, semi-convolution
  • 相关文献

参考文献1

二级参考文献11

  • 1Akram Aldroubi,Carlos Cabrelli,Christopher Heil,Keri Kornelson,Ursula Molter.Invariance of a Shift-Invariant Space[J].Journal of Fourier Analysis and Applications.2010(1)
  • 2Rong-Qing Jia.Shift-invariant spaces and linear operator equations[J].Israel Journal of Mathematics.1998(1)
  • 3Christensen,O. An Introduction to Frames and Riesz Bases . 2003
  • 4Aldroubi A,Grochenig K.Non-uniform sampling and reconstruction in shift-invariant spaces[].SIAM Review.2001
  • 5Jia RQ,Micchelli CA.Using the refinement equation for the construction of pre-wavelets II: Powers of two[].Curves and Surfaces.1991
  • 6Zhou H Y,Jia Y T.Approximation of fixed points of strongly pseudo-contractive mappings without Lipschitz assumption[].Proceedings of the American Mathematical Society.1997
  • 7Van Trees HL.Detection, Estimation, and Modulation Theory, Part I[]..1968
  • 8Wu Z.The shift-invariant subspaces in L1(R)[].Journal of Approximation Theory.2002
  • 9Anastasio M,Cabrelli C,Paternostro V.Extra invariance of shift-invariant spaces on LCA groups[].Journal of Mathematical Analysis and Applications.2010
  • 10Anastasio M,Cabrelli C,Paternostro V.Invariance of a shift-invariant space in several variables[].Complex Anal Oper Theory.2011

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部