期刊文献+

Unconditional Uniqueness of Solution for Hsc Critical 4th Order NLS in High Dimensions

Unconditional Uniqueness of Solution for Hsc Critical 4th Order NLS in High Dimensions
原文传递
导出
摘要 In this paper, we study the unconditional uniqueness of solution for the Cauchy problem of H^·^Sc(0≤Sc〈2) critical nonlinear fourth-order Schrodinger equations iδtu+Δ^2u-εu=λ|u|^αu.By employing paraproduct estimates and Strichartz estimates, we prove that unconditional uniqueness of solution holds in Ct(I;H^·^Sc(R^d)))for d≥11 and min {1^-,8/d-4}≥a〉-(d-4)+√(d-4)^2+64/4. In this paper, we study the unconditional uniqueness of solution for the Cauchy problem of H^·^Sc(0≤Sc〈2) critical nonlinear fourth-order Schrodinger equations iδtu+Δ^2u-εu=λ|u|^αu.By employing paraproduct estimates and Strichartz estimates, we prove that unconditional uniqueness of solution holds in Ct(I;H^·^Sc(R^d)))for d≥11 and min {1^-,8/d-4}≥a〉-(d-4)+√(d-4)^2+64/4.
作者 Chao LU Jing LU
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2018年第6期1028-1036,共9页 数学学报(英文版)
基金 Supported by China Postdoctoral Science Foundation(Grant No.2017M620660)
关键词 Unconditional uniqueness paraproduct estimates Besov spaces fourth order nonlinear Schrodinger equation Unconditional uniqueness, paraproduct estimates, Besov spaces, fourth order, nonlinear Schrodinger equation
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部