摘要
【目的】减少标签传播算法的无效更新、解决算法准确率低的问题。【方法】引入节点信息列表以指导更新过程,避免不必要的更新,从而加快执行速度;采取基于节点对社区偏向程度的更新规则,提高社区划分的准确率。【结果】实验结果表明,相比标签传播算法和两种较好的改进算法,本文提出的基于速度优化和社区偏向的标签传播算法在较大规模网络上的迭代次数减少了几十倍,在真实网络数据集的模块度相对较高,在LFR基准网络数据集的归一化互信息值和F-measure值分别有明显提高。【局限】更新顺序具有随机性,需进一步研究。【结论】本文算法在提高执行速度的基础上,提高了社区发现的准确率。
[Objective] This paper aims to reduce the unnecessary updates and improve the accuracy of Label Propagation Algorithm. [Methods] First, we used the node information list to direct the update process and increase the execution speed. Then, we proposed new updating rules based on the node preference to improve the accuracy of community detection. [Results] Compared with the classic label propagation algorithm and two improved algorithms, the proposed one significantly reduced the number of iterations on large-scale social networks, as well as improved the value of Normalized Mutual Information and F-measure of LFR benchmark network. [Limitations] The new algorithm's updating sequence is random, which needs to be investigated in further studies. [Conclusions] The SOCP_LPA improves the accuracy of community detection and the processing speed.
作者
张素琪
高星
霍士杰
郭京津
顾军华
Zhang Suqi;Gao Xing;Huo Shijie;Guo Jingjin;Gu Junhua(School of Information Engineering, Tianjin University of Commerce, Tianjin 300134, China;School of Computer Science and Software, Hebei University of Technology, Tianjin 300401, China)
出处
《数据分析与知识发现》
CSSCI
CSCD
北大核心
2018年第3期60-69,共10页
Data Analysis and Knowledge Discovery
基金
河北省科技计划项目"智慧热网大数据分析方法及节能技术研究"(项目编号:17210305D)
天津市科技计划项目"智慧热网节能技术及应用"(项目编号:16ZXHLSF0023)
天津市自然科学基金项目"基于图模式的云案例检索技术研究"(项目编号:15JCQNJC00600)的研究成果之一
关键词
标签传播算法
节点信息列表
节点对社区偏向程度
Label Propagation Algorithm Node Information List Node Preference to Community