期刊文献+

基于大数据的地震损失价值评估模型设计 被引量:16

Design of Earthquake Loss Value Evaluation Model Based on Big Data
下载PDF
导出
摘要 破坏性地震往往导致严重的经济损失及人员伤亡,对地震损失价值评价有助于震前找出抗震弱点,提高抗震能力,实现减轻地震灾害损失的目的。传统空间模型在地震数据处理过程中,无法处理大数据对空间尺度选择的干扰,存在地震损失评估结果偏差大以及波动性高的弊端。因此,在云计算平台下,提出基于大数据的地震损失价值评估模型设计,对模型HAZ-China大数据的服务层次、地震应用服务层以及HAZ-China大数据体系结构进行设计,为用户提供震前、震时以及震后的地震损失价值评估服务。模型采用HBase分布式数据库实现大数据的存储和分析,设计房屋震害数据库以及云计算模型,通过考虑大数据因素的地震灾害损失综合评估过程,实现地震损失价值的准确评估。实验结果说明,所设计模型可实现地震损失价值的准确评估,具有较高的评估精度和稳定性。 Destructive earthquakes often lead to serious economic losses and casualties, so it is important to evaluate the value of earthquake loss, for it can help to improve the seismic capacity and reduce the loss of earthquake disasters. In seismic data processing, traditional spatial models cannot deal with the interference of big data on the spatial scale selection, and drawbacks of large deviation and high volatility of seismic loss assessment results must be faced. Therefore, this study designs a seismic loss assessment model based on the cloud computing platform, HAZ-China. The service levels, seismic application service layer, and system structure of the cloud computing platform, HAZ-China, were designed to provide pre , co , and post seismic loss value evaluation services. The model can realize the storage and analysis of big data, then design the building damage database and cloud computing model using the distributed data base, HBase. The model can accurately evaluate the seismic loss value through a comprehensive assess ment of the seismic disaster loss. The experimental results showed that the designed model can realize an accurate evaluation of the value of earthquake loss, and had high convergence, efficiency, and stability.
作者 张加庆 ZHANG Jiaqing(Earthquake Administration of Qinghai Prowince, Xining 81000, Qinghai, China)
机构地区 青海省地震局
出处 《地震工程学报》 CSCD 北大核心 2018年第2期356-362,共7页 China Earthquake Engineering Journal
基金 青海省基础研究项目(2017-ZJ-775)
关键词 大数据 地震损失 价值 评估模型 云计算平台 big data earthquake loss value evaluation model cloud computing platform
  • 相关文献

参考文献10

二级参考文献162

共引文献113

同被引文献168

引证文献16

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部