期刊文献+

Effects of Anthropogenic Disturbance on Sediment Organic Carbon Mineralization Under Different Water Conditions in Coastal Wetland of a Subtropical Estuary 被引量:4

Effects of Anthropogenic Disturbance on Sediment Organic Carbon Mineralization Under Different Water Conditions in Coastal Wetland of a Subtropical Estuary
下载PDF
导出
摘要 The changes in soil organic carbon(C) mineralization as affected by anthropogenic disturbance directly determine the role of soils as C source or sink in the global C budget. The objectives of this study were to investigate the effects of anthropogenic disturbance(aquaculture pond, pollutant discharge and agricultural activity) on soil organic C mineralization under different water conditions in the Minjiang River estuary wetland, Southeast China. The results showed that the organic C mineralization in the wetland soils was significantly affected by human disturbance and water conditions(P < 0.001), and the interaction between human disturbance activities and water conditions was also significant(P < 0.01). The C mineralization rate and the cumulative mineralized carbon dioxide-carbon(CO_2-C)(at the 49th day) ranked from highest to lowest as follows: Phragmites australis wetland soil > aquaculture pond sediment > soil near the discharge outlet > rice paddy soil. This indicated that human disturbance inhibited the mineralization of C in soils of the Minjiang River estuary wetland, and the inhibition increased with the intensity of human disturbance. The data for cumulative mineralized CO_2-C showed a good fit(R^2 > 0.91) to the first-order kinetic model C_t = C_0(1 – exp(–kt)). The kinetic parameters C_0, k and C_0 k were significantly affected by human disturbance and water conditions. In addition, the total amount of mineralized C(in 49 d) was positively related to C_0, C_0 k and electrical conductivity of soils. These findings indicated that anthropogenic disturbance suppressed the organic C mineralization potential in subtropical coastal wetland soils, and changes of water pattern as affected by human activities in the future would have a strong influence on C cycling in the subtropical estuarine wetlands. The changes in soil organic carbon(C) mineralization as affected by anthropogenic disturbance directly determine the role of soils as C source or sink in the global C budget. The objectives of this study were to investigate the effects of anthropogenic disturbance(aquaculture pond, pollutant discharge and agricultural activity) on soil organic C mineralization under different water conditions in the Minjiang River estuary wetland, Southeast China. The results showed that the organic C mineralization in the wetland soils was significantly affected by human disturbance and water conditions(P 〈 0.001), and the interaction between human disturbance activities and water conditions was also significant(P 〈 0.01). The C mineralization rate and the cumulative mineralized carbon dioxide-carbon(CO_2-C)(at the 49th day) ranked from highest to lowest as follows: Phragmites australis wetland soil 〉 aquaculture pond sediment 〉 soil near the discharge outlet 〉 rice paddy soil. This indicated that human disturbance inhibited the mineralization of C in soils of the Minjiang River estuary wetland, and the inhibition increased with the intensity of human disturbance. The data for cumulative mineralized CO_2-C showed a good fit(R^2 〉 0.91) to the first-order kinetic model C_t = C_0(1 – exp(–kt)). The kinetic parameters C_0, k and C_0 k were significantly affected by human disturbance and water conditions. In addition, the total amount of mineralized C(in 49 d) was positively related to C_0, C_0 k and electrical conductivity of soils. These findings indicated that anthropogenic disturbance suppressed the organic C mineralization potential in subtropical coastal wetland soils, and changes of water pattern as affected by human activities in the future would have a strong influence on C cycling in the subtropical estuarine wetlands.
出处 《Chinese Geographical Science》 SCIE CSCD 2018年第3期400-410,共11页 中国地理科学(英文版)
基金 Under the auspices of National Basic Research Program of China(No.2012CB956100) National Natural Science Foundation of China(No.41301085) the Key Foundation of Science and Technology Department of Fujian Province(No.2016R1032-1)
关键词 矿化作用 沼泽地 副热带 器官 水池 河口 沉积 沿海 human disturbance carbon mineralization water conditions coastal wetland
  • 相关文献

参考文献5

二级参考文献48

共引文献288

同被引文献57

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部