期刊文献+

基于大数据的煤矿瓦斯事故关键要素分析 被引量:2

Analysis on key factors of coal mine gas accident based on big data
原文传递
导出
摘要 针对危害性大、易造成群死群伤的瓦斯事故,运用大数据理念和方法,搜集海量事故相关资料,并通过构建VSM向量空间模型,实现事故相关资料的信息化、数据化。在通用词典和专业词典基础上,运用TFIDF算法,经过词频统计、特征过滤、特征合并,形成事故特征词典。在事故特征词典基础上,进一步运用语料库进行特征词典过滤,并最终通过Delphi法实现煤矿瓦斯事故关键要素识别。 According to a high danger and mass injuries caused by the mine gas accident, a big data idea and method was applied to collect the related information of the mass accidents. With the establishment on a vector space modal (VSM), the informatization and digitalization of the accident related information were realized. Based on the general dictionary and the professional dictionary, a TFIDF algorithm was applied to form an accident characteristic dictionary with the word frequency statistics, characteristics filtration and the characteristics combination. Based on the accident characteristics dictionary, a corpus was further applied to the filtration of the characteristics dictionary. Finally the Delphi method could be applied to realize the key factor identification of the mine gas accident.
作者 张光德 徐会军 Zhang Guangde;Xu Huijun(China Shenhua Energy Company Limited, Beijing 100011, China)
出处 《煤炭经济研究》 2018年第3期67-71,共5页 Coal Economic Research
关键词 大数据 向量空间模型 TFIDF算法 事故关键要素 煤矿瓦斯 big data vector space modal (VSM) TFIDF algorithm key factors of accident mine gas
  • 相关文献

参考文献12

二级参考文献78

共引文献464

同被引文献28

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部