期刊文献+

基于分割块的图像语义分割方法 被引量:3

Image semantic segmentation method based on segmentation block
下载PDF
导出
摘要 针对复杂室外环境下,传统语义分割模型无法准确描述对象轮廓的问题,提出了采用结构森林法生成边缘概率,运用分水岭算法将边缘概率转化成初始割块。为避免过分分割,利用超度量轮廓图算法选取适当阈值生成分割块以获取更准确的轮廓信息,通过随机森林训练分割块,得到语义分割结果。实验结果表明:在处理复杂的语义分割任务时,基于分割块的方法在精度、鲁棒性和速率方面均具有良好表现。 Aiming at problem that conventional semantic segmentation models cannot describe object contour accurately under complex circumstance,a new image semantic segmentation method based on segmented block is proposed.Structural forest method is applied to generate contour probability.And the method of watershed is used to transform to initial block of image segmentation. To avoid over-segmentation,ultrametric contour map(UCM)algorithm is performed to select appropriate threshold to generate segmentation block,so as to obtain more accurate contour information. By random forest,train block of image segmentation,obtain semantic segmentation result.Experimental results demonstrate that the proposed method based on segmentation block is superior to traditional methods on precision,robustness and rate while handling complex semantic segmentation task.
作者 曹攀 董洪伟 钱军浩 CAO Pan;DONG Hong-wei;QIAN Jun-hao(College of Internet of Things Engineering, Jiangnan University, Wuxi 214122, China)
出处 《传感器与微系统》 CSCD 2018年第4期70-72,76,共4页 Transducer and Microsystem Technologies
关键词 对象轮廓 分割块 分水岭 随机森林 语义分割 object contour block of segmentation watershed random forests semantic segmentation
  • 相关文献

参考文献6

二级参考文献84

  • 1薛斌党,薛文芳,姜志国.三维种子填充算法的改进[J].计算机辅助设计与图形学学报,2006,18(10):1553-1556. 被引量:16
  • 2高琰,谷士文,唐琎,蔡自兴.机器学习中谱聚类方法的研究[J].计算机科学,2007,34(2):201-203. 被引量:31
  • 3章毓晋.客观的图象质量测度及其在分割评价中的应用[J].电子科学学刊,1997,19(1):1-5. 被引量:12
  • 4王玲,薄列峰,焦李成.密度敏感的谱聚类[J].电子学报,2007,35(8):1577-1581. 被引量:61
  • 5Gonzalez R C,Woods R E.数字图像处理[M].阮秋琦,阮宇智,译.2版.北京:电子工业出版社,2003.
  • 6Sahoo P K, Soltani S, Wong A K C, et al. Survey of thresholding techniques[J]. Computer Vision, Graphics, and Image Processing, 1988, 41(2): 233-260.
  • 7Pohlman S, Powell K A, Obuchowski N A, et al. Quantitative classification of breast tumores in digitized mamograms[J]. Medical Physics, 1996, 23(8): 1337-1345.
  • 8Vincent L, Soille P. Watersheds in digital spaces: an efficient algorithm based on immersion simulations [J]. IEEETransactions on Pattern Analysis and Machine Intelligence, 1991, 13(6): 583-598.
  • 9Cheng Y Z. Mean shift, mode seeking, and clustering [J]. Pattern Analysis and Machine Intelligence, 1995, 17(8) : 790- 799.
  • 10CUDA C Programming Guide Version 3.2 [M]. Santa Clara: NVIDIA Corporation, 2010.

共引文献172

同被引文献35

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部