摘要
针对极限学习机(ELM)在训练过程中需要大量隐含层节点的问题,提出了差分进化与克隆算法改进人工蜂群优化的极限学习机(DECABC-ELM),在人工蜂群算法的基础上,引入了差分进化算法的差分变异算子和免疫克隆算法的克隆扩增算子,改进了人工蜂群收敛速度慢等缺点,使用改进的人工蜂群算法计算ELM的隐含层节点参数。将算法应用于回归和分类数据集,并与其他算法进行比较,获得了良好的效果。
Aiming at problem that extreme learning machine(ELM) needs numerous hidden layer nodes in training process,a new improved differential evolution and clone artificial bee colony(ABC) optimized extreme learning machine(DECABC-ELM) is proposed. In DECABC-ELM,differential evolution mutation operator of differential evolution algorithm and clone-increase operator of immune clonal algorithm are introduced into ABC algorithm to improve the slow convergence speed of it,then the improved ABC is used to calculate the hidden layer node parameters of ELM.DECABC-ELM are used in regression and classification data set and compare with other algorithms,it shows that DECABC-ELM performs better than other algorithms.
作者
毛羽
毛力
杨弘
肖炜
MAO Yu;MAO Li;YANG Hong;XIAO Wei(Key Laboratory of Advanced Process Control for Light Industry, Ministry of Education, School of Internet of Things Engineering, Jiangnan University, Wuxi 214122, China;Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi 214081, China)
出处
《传感器与微系统》
CSCD
2018年第4期116-120,共5页
Transducer and Microsystem Technologies
基金
轻工过程先进控制教育部重点实验室开放课题资助(江南大学)项目(APCLI1004)
江南大学自主科研计划重点资助项目
关键词
人工蜂群算法
极限学习机
单隐含层前馈神经网络
artificial bee colony (ABC) algorithm
extreme learning machine
single hidden layer feedforwardneural networks