摘要
针对传统人脸对齐算法对于较大人脸姿态鲁棒性较差,并且对于人脸检测结果十分敏感的问题,提出了一种基于改进的局部二值特征的人脸对齐算法。不同于传统的形状索引特征,在一种空间依赖假设下的前提下设计相对索引特征。同时,在这种空间依赖假设下使用半全局线性学习替代全局线性学习。通过人脸对齐敏感性分析比较了算法在不同人脸检测器下的鲁棒性,在300-W基准数据集上的实验表明:算法优于传统的级联回归算法。
Aiming at problem that traditional algorithm is inefficient in large shape variations and different face detectors,a face alignment algorithm based on improved local binary features is proposed.Different from traditional shape-indexed features,a relative-indexed features under a spatial interdependency assumption is designed.Moreover,this algorithm abandon a global linear learning and use a semi-global linear learning under this spatial interdependency assumption. A face alignment sensitivity analysis is used to compare robustness the algorithm under different face detector. Extensive experiments on 300-W benchmark dataset demonstrate that this algorithm outperforms the traditional cascaded regression algorithm.
作者
杨韬
孔军
YANG Tao;KONG Jun(Key Laboratory of Advanced Process Control for Light Industry, Jiangnan University, Wuxi 214122, China;College of Electrical Engineering, Xinjiang University, Urumqi 830047, China)
出处
《传感器与微系统》
CSCD
2018年第4期145-147,154,共4页
Transducer and Microsystem Technologies
基金
国家自然科学基金资助项目(61362030
61201429)
博士后科学基金资助项目(2015M581720
2016M600360)
江苏省科学基金资助项目(1601216C)
公安部技术研究项目(2014JSYJB007)
关键词
人脸对齐
相对索引特征
空间依赖
敏感性分析
级联回归
face alignment
relative-indexed features
spatial interdependency
sensitivity analysis
cascaded regression