期刊文献+

Distributing pairs of vertices on Hamiltonian cycles

Distributing pairs of vertices on Hamiltonian cycles
原文传递
导出
摘要 Let G be a graph of order n with minimum degree δ(G)≥n/2+1. Faudree and Li(2012) conjectured that for any pair of vertices x and y in G and any integer 2≤k≤n/2, there exists a Hamiltonian cycle C such that the distance between x and y on C is k. In this paper, we prove that this conjecture is true for graphs of sufficiently large order. The main tools of our proof are the regularity lemma of Szemer′edi and the blow-up lemma of Koml′os et al.(1997). Let G be a graph of order n with minimum degree δ(G)≥n/2+1. Faudree and Li(2012) conjectured that for any pair of vertices x and y in G and any integer 2≤k≤n/2, there exists a Hamiltonian cycle C such that the distance between x and y on C is k. In this paper, we prove that this conjecture is true for graphs of sufficiently large order. The main tools of our proof are the regularity lemma of Szemer′edi and the blow-up lemma of Koml′os et al.(1997).
出处 《Science China Mathematics》 SCIE CSCD 2018年第5期955-972,共18页 中国科学:数学(英文版)
基金 supported by National Natural Science Foundation of China (Grant Nos. 11601093 and 11671296)
关键词 Hamiltonian cycle Faudree-Li conjecture regularity lemma blow-up lemma Hamiltonian 顶点 散布 证明 词根 整数 周期 距离
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部