期刊文献+

Investigation and statistical modeling of InAs-based double gate tunnel FETs for RF performance enhancement

Investigation and statistical modeling of InAs-based double gate tunnel FETs for RF performance enhancement
原文传递
导出
摘要 In this paper,RF performance analysis of In As-based double gate(DG)tunnel field effect transistors(TFETs)is investigated in both qualitative and quantitative fashion.This investigation is carried out by varying the geometrical and doping parameters of TFETs to extract various RF parameters,unity gain cut-off frequency(f_t),maximum oscillation frequency(f_(max)),intrinsic gain and admittance(Y)parameters.An asymmetric gate oxide is introduced in the gate-drain overlap and compared with that of DG TFETs.Higher ON-current(ION)of about 0.2 mA and less leakage current(IOFF)of 29 f A is achieved for DG TFET with gate-drain overlap.Due to increase in transconductance(g_m),higher ft and intrinsic gain is attained for DG TFET with gate-drain overlap.Higher f_(max) of 985 GHz is obtained for drain doping of 5×10^(17)cm^(-3) because of the reduced gate-drain capacitance(C_(gd))with DG TFET with gate-drain overlap.In terms of Y-parameters,gate oxide thickness variation offers better performance due to the reduced values of Cgd.A second order numerical polynomial model is generated for all the RF responses as a function of geometrical and doping parameters.The simulation results are compared with this numerical model where the predicted values match with the simulated values. In this paper,RF performance analysis of In As-based double gate(DG)tunnel field effect transistors(TFETs)is investigated in both qualitative and quantitative fashion.This investigation is carried out by varying the geometrical and doping parameters of TFETs to extract various RF parameters,unity gain cut-off frequency(f_t),maximum oscillation frequency(f_(max)),intrinsic gain and admittance(Y)parameters.An asymmetric gate oxide is introduced in the gate-drain overlap and compared with that of DG TFETs.Higher ON-current(ION)of about 0.2 mA and less leakage current(IOFF)of 29 f A is achieved for DG TFET with gate-drain overlap.Due to increase in transconductance(g_m),higher ft and intrinsic gain is attained for DG TFET with gate-drain overlap.Higher f_(max) of 985 GHz is obtained for drain doping of 5×10^(17)cm^(-3) because of the reduced gate-drain capacitance(C_(gd))with DG TFET with gate-drain overlap.In terms of Y-parameters,gate oxide thickness variation offers better performance due to the reduced values of Cgd.A second order numerical polynomial model is generated for all the RF responses as a function of geometrical and doping parameters.The simulation results are compared with this numerical model where the predicted values match with the simulated values.
出处 《Journal of Semiconductors》 EI CAS CSCD 2018年第5期30-40,共11页 半导体学报(英文版)
基金 Project supported by the Department of Science and Technology,Government of India under SERB Scheme(No.SERB/F/2660)
关键词 double gate tunnel FETs gate-drain overlap unity gain cut-off frequency maximum oscillation frequency Y-parameters modeling double gate tunnel FETs gate-drain overlap unity gain cut-off frequency maximum oscillation frequency Y-parameters modeling
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部