摘要
文章通过选取特殊的权函数,基于Berrut提出的有理插值的重心形式,构造出无极点的重心有理插值,研究了二元散乱数据的重心有理插值,给出的数值例子说明了新方法的有效性。
In this paper by selecting special weight function,we construct the barycentric rational interpolation without poles based on the barycentric form of rational interpolation proposed by Berrut,the barycentric rational interpolation of bivariate scattered data is studied.Finally,some numerical examples are given to show the effectiveness of the proposed methods.
作者
王本强
赵前进
WANG Benqiang;ZHAO Qianjin(School of Mathematics and Big Data of Anhui University of Science and Technology, Huainan 232001, China)
出处
《太原学院学报(自然科学版)》
2018年第1期26-28,32,共4页
Journal of TaiYuan University:Natural Science Edition
基金
国家自然科学基金(60973050)
安徽省教育厅自然科学基金项目(KJ2009A50)
关键词
二元
散乱数据
重心有理插值
bivariate
scattered data
barycentric rational interpolation